| Institut
de
                  Mathématiques de Bourgogne CNRS UMR 5584, Université de Bourgogne B. P. 47870, 21078 Dijon | Mathematical Institute of
                  Burgundy Burgundy University B. P. 47870, 21078 Dijon France | 
| Editions Hermann Table des matières Premier chapitre Errata (premier tirage jusqu'à la fin d'octobre 2013 Errata (réimpression novembre 2013) Errata (réimpression juin 2015) Un extrait d'une revue du Mathematical Reviews [This
                      book] introduces the reader to the topological foundations
                      of functional analysis in a concise, clear,
                      well-structured manner.  Chapters usually begin with interesting historical comments; these should stimulate the reader’s curiosity. All the chapters and all the appendices are followed by well-chosen exercises (altogether there are over two hundred of them). The last hundred pages or so of the book present their solution; this feature makes the book ideal for self-study. The many examples are put at the appropriate place; they usually substantiate a statement just made and make clear the limits of a theorem. In his student days, this reviewer would have been glad to have learnt the subject from this book. Carlo E. Sempi Traduction en français 
                          Ce livre introduit le lecteur aux
                      fondations topologiques de l'analyse fonctionnelle d'une
                      manière concise, claire et bien structurée. En règle générale, les chapitres commencent par d'intéressants commentaires historiques, ce qui devrait stimuler la curiosité du lecteur. Tous les chapitres et annexes sont accompagnés d'exercices, bien choisis (au total plus de deux cents). La dernière centaine de pages présente leurs solutions, ce qui rend le livre idéal pour l'auto-apprentissage. De nombreux exemples sont placés de façon judicieuse ; ils justifient les propositions qui les précèdent et précisent leur portée. Quand il était étudiant, ce rapporteur aurait été content d'apprendre le sujet avec ce livre. Carlo E. Sempi | World Scientific Publishing    The
                      textbook is an alternative to a classical introductory
                      book in point-set topology. The approach however is
                      radically different from the classical one. It is based on
                      convergence rather than on open and closed sets. Convergence of filters is a natural generalization of the basic and well-known concept of convergence of sequences, so that convergence theory is more natural and intuitive to many, perhaps most, students than classical topology. On the other hand, the framework of convergence is easier, more powerful and far-reaching which highlights a need for a theory of convergence in various branches of analysis. 
                          Convergence theory for filters is
                      gradually introduced and systematically developed.
                      Topological spaces are presented as a special subclass of
                      convergence spaces of particular interest, but a large
                      part of the material usually developed in a topology
                      textbook is treated in the larger realm of convergence
                      spaces. Contents A fragment from a review "It
                            is clear that the book, with its high level of
                            scholarship, is a labour of love on the part of its
                            authors, and it will no doubt make quite a dent in
                            the right circles … The mature reader, disposed to
                            this way of redoing topology, will have a great
                            time." Mathematical Association of America |