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Abstract. We investigate under what conditions sequentially continuous maps

between convergence spaces are continuous. Along the way, we provide a new

characterization of the Urysohn property for convergence of sequences in terms
of a functorial inequality, and introduce a new class of filters, called sequence-

rich, intermediate between first-countable and Fréchet α2.

1. Introduction

Definitions and notations concerning convergence spaces follow [8]. We gather
this information in an appendix for the sake of completeness.

Beattie and Butzmann make in [2] a compelling argument that convergence vec-
tor spaces offer a more convenient framework for functional analysis than topolog-
ical vector spaces. A convergence vector space is a vector space equipped with a
convergence structure making the addition and scalar multiplication continuous.
Convergent vector spaces are particularly convenient for analysis in part because
countability conditions are more often present than in the topological setting (e.g.,
spaces of test functions and of distributions are second-countable when viewed as
convergence vector spaces), allowing frequent sequential arguments. However, one
needs to be cautious because even among first countable convergence spaces, con-
tinuity and sequential continuity are different notions. Recall that a convergence is
first-countable if whenever x ∈ limF , there exists a countably based filter D ≤ F
such that x ∈ limD. In [3] sequentially determined convergences were introduced
and shown to be –among first countable convergences– exactly the class of conver-
gences for which sequential continuity and continuity coincide.

In the present paper, we investigate the question of when sequential continuity
and continuity coincide, and more generally when D-continuity and continuity co-
incide, where D is a class of filters and a map f : (X, ξ) → (Y, τ) is D-continuous if
f (limξD) ⊂ limτf(D) for every D ∈ D. In this context, we do not need to restrict
ourselves to first-countable spaces. However various instances of D-based conver-
gences, that is, convergences for which whenever x ∈ limF , there exists a filter D of
D coarser than F such that x ∈ limD, play a fundamental role. In particular, in re-
sults on sequential continuity, countably based filters can be replaced by the larger
class of sequence-rich filters, which is in some sense the largest class that could be
used. Doing so, we improve some results of [3] and [2]. The class of sequence-rich
filters, studied in Section 5, is a proper subclass of Fréchet α2-filters (1).

1A filter is Fréchet if A#F implies that there is a sequence on A finer than F . Notice that a

topological space has the Fréchet-Urysohn property if and only if each of its neighborhood filters
is Fréchet. See Section 5 for the definition of α2.
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In many arguments, sequentially based convergences, that is, convergences based
in the class E of filters generated by sequences, as well as sequentially based modifi-
cations of convergences, play an important role. An essential ingredient is to know
when a convergence of sequences (a sequentially based convergence) is the conver-
gence of sequences for a topology, a pretopology, a paratopology, a pseudotopology.
We give characterizations of such sequentially based convergences in terms of func-
torial inequalities in Section 2. Similar characterizations were known, in particular
from S. Dolecki and G. Greco [9]. However, the characterization of convergence
of sequences for paratopologies as Urysohn convergences, that is, convergences for
which a sequence whose every subsequence has a subsequence converging to x con-
verges to x, is of particular interest and seems entirely new.

2. Reflective classes of sequentially based convergence spaces

In this section, we investigate the conditions under which a convergence of se-
quences can be considered as the convergence of sequences for a convergence in
a specific reflective class of convergences. In particular we consider this property
for the reflective subcategories S of pseudotopological, Pω of paratopological, P of
pretopological, and T of topological spaces. It can be interpreted by a functorial
inequality. Recall that Seq denotes the sequentially based coreflector of Conv.

Proposition 1. Let J be a reflector of Conv. The convergence Seqξ is the con-
vergence of sequences for a J-convergence if and only if

ξ ≤ SeqJSeqξ. (1)

In particular, a sequentially based convergence τ is the convergence of sequences for
a J-convergence if and only if τ ≤ SeqJτ .

Proof. If ξ satisfies (1) then Seqξ = SeqJSeqξ so that Seqξ is the convergence of
sequences for the J-convergence JSeqξ. Conversely, if there is σ = Jσ such that
Seqξ = Seqσ, then ξ ≤ Seqξ = Seqσ = SeqJσ and Jσ ≤ JSeqσ = JSeqξ. Hence,
ξ ≤ SeqJSeqξ. �

This general fact –a particular case of a general scheme based on Galois connec-
tions presented in [9]– takes more specific forms in the case where the reflector J
is the pseudotopologizer S and when J is the paratopologizer Pω.

The following observation is a consequence of [9, Theorem 5.2].

Lemma 2.
limSeq(Sξ) (F ∧ G) = limSeq(Sξ)F∩limSeq(Sξ)G.

Proposition 3. For every convergence ξ,

S(Seqξ) ≥ Seq(Sξ).

Proof. Let x ∈ limS(Seqξ)F . Then for every U ∈U (F) , there exists a sequence
(yUn )n ≤ U such that x ∈ limξ(yUn )n. If U is free, we can assume (yUn )n to be a free
sequence. Otherwise, U = {u}↑ is a constant sequence converging to x. Either way,
U contains a countable (possibly finite) set EU . Thus, by compactness of U(F) in
β|ξ| (2), there exists a finite collection U1, . . . ,Un of ultrafilters finer than F such

2If X is a set, βX (β∗X) denotes the set of its (free) ultrafilters endowed with its

Stone topology (which is compact Hausdorff). A base for this topology is formed by
{βU = {U ∈ βX : U ∈ U} : U ⊂X} (with β∅ = ∅).
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that
⋃n

i=1 EUi ∈ F . Hence F contains a countable set. If this set is finite, let
(wn)nω be a sequence whose sequential filter is

⋃n
i=1 EUi . If

⋃n
i=1 EUi is infinite, let

(wn)n denote the cofinite filter of this countable set. We show that x ∈ limSξ(wn)n.
Indeed, if W ∈U((wn)n), then W ∈U(

⋃n
i=1 EUi

) and therefore, there is i ∈ {1 . . . n}
such that EUi

∈ W. If EUi
= {ui}, then W = {ui}↑ converges to x. Otherwise,

W ≥ (yUi
n )n so that x ∈ limξW.

If F is free then F ≥ (wn)n, so that x ∈ limSeq(Sξ)F . If F is principal then it is
the principal filter of a countable set, and therefore is a sequential filter (3). Hence
x ∈ limSeq(Sξ)F because x ∈ limSξF . Now,

limS(Seqξ)F = limS(Seqξ)F◦ ∧ F•

= limS(Seqξ)F◦ ∩ limS(Seqξ)F•

⊂ limSeq(Sξ)F◦ ∩ limSeq(Sξ)F•

⊂ limSeq(Sξ)F ,

the last inclusion following from Lemma 2. �

Corollary 4. The convergence Seqξ is a pseudotopology if and only if

ξ ≤ SeqSSeqξ.

In particular, Seq ∩ S is the class of convergence of sequences for a pseudotopology.

Proof. If ξ ≤ SeqSSeqξ, then Seqξ ≤ SeqSSeqξ, and, in view of Proposition 3,
Seqξ ≤ SSeqSeqξ = SSeqξ. Hence Seqξ is a pseudotopology. Conversely, if Seqξ is
pseudotopological, then Seqξ ≤ SSeqξ ≤ SeqSSeqξ. Hence, ξ ≤ SeqSSeqξ.

In particular τ = Seqτ is pseudotopological if and only if τ ≤ SeqSτ. In this
case, τ is the convergence of sequences for a pseudotopology: itself. Conversely,
if τ = Seqσ for some σ = Sσ, then τ = SeqSσ ≤ SSeqσ = Sτ, so that τ is
pseudotopological. �

Recall that a convergence space is Urysohn (4) if a sequence converges to x when-
ever every subsequence has a subsequence which converges to x. This property is
also called sequentially Choquet in [2], and sequentially maximal in [3]. A charac-
terization of this property by an inequality of the type (1) was unknown, despite
the extensive study of both the Urysohn property and functorial inequalities in [9].
Hence, the following new result completes the general scheme.

Proposition 5. A convergence ξ is Urysohn if and only if

ξ ≤ SeqPωSeqξ.

In particular, a sequentially based convergence τ is Urysohn if and only if

τ ≤ SeqPωτ (2)

if and only if it is the convergence of sequences for a paratopology.

3If A = {ai : i ∈ ω}, then A↑ coincides with the sequential filter of the sequence
a1, a2, a1, a3, a1,a2, a4, a1, a2, a3, a5, ...

4This is not to be confused with the notion of a T2 1
2

topological, sometimes also called Urysohn

topological space, which means that two disjoint points always have open neighborhood with
disjoint closures (e.g., [11]).
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Proof. Assume that ξ is Urysohn and let x ∈ limPωSeqξ(xn)n. Every subsequence
(xnk

)k of (xn)n is a countably based filter meshing with (xn)n so that x ∈ adhSeqξ(xnk
)k.

Hence, there exists a subsequence of (xnkp
)p that converges to x. By the Urysohn

property, x ∈ limξ(xn)n.
Conversely, assume that ξ ≤ SeqPωSeqξ and that (xn)n has the property that

each of its subsequences has a subsequence converging to x. Then x ∈ limPωSeqξ(xn)n ⊂
limξ(xn)n. Indeed, ifH is a countably based filter such thatH#(xn)n then there is a
subsequence (yn)n of (xn)n which is finer than H. Since (yn)n admits a subsequence
that converges to x, we have that x ∈ adhSeqξH. �

While the characterization (16) of countably Choquet spaces immediately implies
the observation [2] that pseudotopological spaces (called Choquet spaces in [2]) are
countably Choquet, the characterization of the Urysohn property obtained above
shows that (5):

Corollary 6. Every paratopology is Urysohn.

The converse of Corollary 6 is false, as shows the following example.

Example 7 (Non paratopological Urysohn convergence). Let τ be a non first-
countable strongly Fréchet topology. In view of Appendix (13), we have τ = PωSeqτ .
As τ is not first-countable, τ < Seqτ, so that Seqτ is not paratopological. However,
Seqτ is the convergence of sequences for a topology and is therefore Urysohn.

The following example improves [9, Example 5.6] which gives a sequentially based
pseudotopological space that is not Urysohn. Indeed, the convergence constructed
below is also Hausdorff, which was not the case of the cited example.

Example 8 (Hausdorff non-Urysohn sequentially based pseudotopology). Let X
be a countably infinite set and let ∞ be an element of X. Consider a free ultrafilter
W and define a convergence ξ on X in which ∞ is the only non-isolated point
by limξF = {∞} if F is either the principal ultrafilter of ∞ or is free and does
not mesh W. The convergence ξ is not Urysohn, because each sequence on X
contains a subsequence, the range of which does not belong to W, hence converging
to ∞, but the sequence that generates the cofinite filter of X does not converge,
because it meshes W. The convergence ξ is a pseudotopology, so that Seqξ is also a
pseudotopology in view of Corollary 4, because if ∞ ∈ limξU for each ultrafilter U ≥
F , then for each such U there is UU ∈ U\W#, hence by the compactness of U(F) in
βω there exist n < ω and U1, . . . ,Un finer than F such that UU1∪. . .∪UU1 ∈ F\W#

proving that ∞ ∈ limξF .

The following is another example of a Hausdorff non-Urysohn sequentially based
pseudotopology.

Example 9. [3, Example 2.17 (i)] Let A = {A ⊂ R :
∑

a∈A |a| < ∞} and let
ξ be the convergence on R in which all points but 0 are isolated and 0 ∈ limξF
if 0 ∈ limRF and F ∩A 6= ∅. The convergence ξ is Hausdorff because it is finer

5The claim that Choquet spaces are Urysohn [2] turns out to be false, as shows Example

8 or [3, Example 2.17(i)]. Also the terminology ”sequentially Choquet” seems inconsistent. In
view of Proposition 3, it seems more consistent to call sequentially Choquet convergences that

are pseudotopological and sequentially based. As shown in Example 8, it does not coincide with

sequential convergences with the Urysohn property. In view of Proposition 5, a more coherent
alternative name for the Urysohn property can be sequentially paratopological.
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than the usual topology of R. It is pseudotopological because if each element of
U(F) contains a summable set, so does F by compactness of U(F) in βR. It is
not Urysohn because each subsequence of ( 1

n )n∈N has a convergent subsequence, but
( 1

n )n∈N does not converge. In view of Proposition 3, Seqξ is a Hausdorff sequentially
based pseudotopology that is not Urysohn.

In view of Proposition 1, a sequentially based convergence τ is the convergence
of sequences for a topology if and only if τ ≤ SeqTτ . Because T ≤ Pω, it is obvious
that such convergences must be Urysohn. Among Hausdorff convergences (but not
in general), the converse is true (e.g., [15], [6], [9, Corollary 7.4]). Hence, in view
of Proposition 5,

Corollary 10. If ξ is a Hausdorff paratopology then the convergent sequences for
ξ, Pξ and Tξ are the same.

The examples above show that this is not true for a Hausdorff pseudotopology.
Further conditions characterizing convergence of sequences for pseudotopologies,

pretopologies and topologies can be found in [9].

3. Modified continuity

It is well known (e.g., [11]) that a sequentially continuous map between two
topological spaces is continuous provided that the domain is a sequential space,
that is, sequentially closed sets are closed. We shall see that this classical fact
not only extends to convergence spaces but is an instance of a general but simple
scheme.

Proposition 11. Let F : Conv → Conv be a (concrete) functor. If f : Fξ → Fτ
is continuous, ξ ≥ Fξ and τ ≤ Fτ, then f : ξ → τ is continuous.

Proof. As f : Fξ → Fτ is continuous, Fτ ≤ f(Fξ). Under our assumptions

τ ≤ Fτ ≤ f(Fξ) ≤ fξ,

so that f : ξ → τ is continuous. �

If a map f : |ξ| → |τ | is sequentially continuous then f : Seqξ → Seqτ is
continuous. If J is a functor then f : JSeqξ → JSeqτ is also continuous, so that
Proposition 11 applies with F = JSeq. In particular when J runs over T, P, Pω, S,
we obtain, in view of Appendix (13):

Corollary 12. (1) A sequentially continuous map f : |ξ| → |τ | from a sequen-
tial convergence (ξ ≥ TSeqξ) to a convergence

τ ≤ TSeqτ

(in particular to a topology) is continuous;
(2) A sequentially continuous map f : |ξ| → |τ | from a Fréchet convergence

(ξ ≥ PSeqξ) to a convergence

τ ≤ PSeqτ

(in particular to a pretopology) is continuous;
(3) A sequentially continuous map f : |ξ| → |τ | from a strongly Fréchet con-

vergence (ξ ≥ PωSeqξ) to a convergence

τ ≤ PωSeqτ (3)

(in particular to a paratopology) is continuous;
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(4) A sequentially continuous map f : |ξ| → |τ | from a sequentially based pseu-
dotopology to a convergence

τ ≤ SSeqτ

(in particular a pseudotopology) is continuous.

Notice that given a projector J and a coprojector E, properties of the type
τ ≤ EJτ and of the type τ ≤ JEτ are of different nature. In particular, (2)
and (3) should be carefully distinguished. For instance the convergence Seqτ in
Example 7 satisfies (2) but not (3). However, one easily sees that a convergence
satisfying (3) must be Urysohn by applying the expansive modifier Seq to (3).

A convergence space is sequentially determined [3] if a countably based filter
converges to x whenever each finer sequence does.

One of the main motivations for the introduction of sequentially determined
convergence spaces by R. Beattie and H.P. Butzmann is that in general sequential
continuity of a map between two convergence spaces does not imply continuity,
even if these convergence spaces are first-countable. However

Theorem 13. [3, Theorem 2.10] If (X, ξ) is first-countable and (Y, τ) is sequentially
determined, then f : (X, ξ) → (Y, τ) is continuous if and only if it is sequentially
continuous.

Among the large classes of convergence spaces shown to be sequentially deter-
mined are all first-countable pretopological spaces, second-countable convergence
spaces and web-spaces (see [3] and [2]). It is interesting to note that every first-
countable convergence is Fréchet and every first-countable pretopological space
(even every pretopological space!) is a PSeq≥I -convergence. Hence Corollary 12
(2) gives a useful alternative to Theorem 13. However,

Proposition 14. Every PSeq≥I-convergence is sequentially determined.

Proof. If F is countably based, then F =
∧

(xn)n≥F
(xn)n. If each (xn)n finer than

F converges to x for ξ, then F =
∧

(xn)n≥F
(xn)n converges for PSeqξ, hence for ξ

because PSeqξ ≥ ξ. �

Recall that a map f : |ξ| → |τ | is called J-continuous if f : BaseJξ → τ is
continuous. The class J is transferable if f(J ) ∈ J(Y ) whenever f : X → Y and
J ∈ J(X). If J is transferable then f : |ξ| → |τ | is J-continuous if and only if
f : BaseJξ → BaseJτ is continuous. In the next section, we study conditions that
ensure that J-continuous maps are continuous.

4. Convergences determined by finer filters

Let J be a class of filters. A convergence ξ is called determined by finer J-filters
if

limξF =
⋂

J∈J(F)

limξJ .

Proposition 15. The class of convergences determined by finer J-filters is projec-
tive and the associated projector is given by

limUJξF =
⋂

J∈J(F)

limξJ .
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Proof. It is easy to verify that UJξ ≤ UJτ whenever ξ ≤ τ, that UJξ ≤ ξ, and that
UJ idempotent. �

Note that if J(F) = ∅ then limUJξF =|ξ|. Hence, UJξ typically fails to be
Hausdorff.

Recall [3] that a convergence is called sequentially determined if a countably
based filter converges to a point whenever every finer sequence does, and that E
denotes the class of filters generated by sequences. It is now immediate that

Proposition 16. A convergence ξ is sequentially determined if and only if

BaseF1UEξ ≥ ξ.

Example 17. If ν denotes the usual topology of the real line, then Seqν is not
sequentially determined. However, ν is sequentially determined by Proposition 14.

Proposition 18. Let J be a class of filters. Then:
(1) J ∈J =⇒ limUJξJ =limξJ ;
(2) BaseJUJ = BaseJ;
(3) UJBaseJ = UJ.

A filter D on X is J-rich if for every f : X → Y and every J ∈ J(f(D)), there
exists G ∈ J(D) such that J ≥f(G). Recall [14] that a class J of filters is called
steady if for every meshing J-filters J and G, the filter J ∨ G is also in J. A class
D of filters is called J-composable if J (D) = {J(D) : J ∈ J , D ∈ D} is a (possibly
degenerate) D-filter (on Y ) whenever D is a D-filter (on X) and J is a J-filter (on
X ×Y ). Here we assume that every class of filters contains the degenerate filter on
each set.

Lemma 19. If J is F0-composable and steady, then every J-filter is J-rich.

Proof. Let f : X → Y, F ∈J(X) and J ∈J(f(F)). Then for each F ∈ F , there
exists AF ⊂ F such that f(AF ) ∈ J . By F0-composability of J, f−J ∈J. Moreover
f−J#F . Since J is steady, f−J ∨ F = G ∈J(F). For each J ∈ J and F ∈ F ,
there exists AF ⊂ f−J ∩ F. Hence f(f−J ∩ F ) ∈ J . Thus J ≥f(G). �

Proposition 20. UJ is a functor (hence, a reflector) if and only if every filter is
J-rich.

Proof. Consider f : X → (Y, τ), and let x ∈ limUJf−τF , that is, x ∈ limf−τG for ev-
ery G ∈J(F). Hence f(x) ∈ limτf(G) for every G ∈J(F). Let J ∈ J(f(F)). Because
F is J-rich, there exists G ∈J(F) such that J ≥f(G) ≥f(F). But f(x) ∈ limτf(G),
thus f(x) ∈ limτJ . Therefore f(x) ∈ limUJτf(F), that is, x ∈ limf−(UJτ)F .

Conversely, assume that there exists a non J-rich filter F on X, that is, there
exists f : X → Y and J ∈J(f(F)) such that for every G ∈J(F), J /∈J(f(G)). Let
x0 ∈ X and let ξ denote the atomic convergence on X defined by x0 ∈ limξH
if there exists G ∈ J(F) such that H ≥ G. Then f : ξ → fξ is continuous but
f : UJξ → UJ(fξ) is not. Indeed, x0 ∈ limUJξF , that is, f(x0) ∈ limf(UJξ)f(F). But
f(x0) /∈ limUJ(fξ)f(F) because f(x0) /∈ limfξJ . �

Recall that F denotes the class of all filters and U denotes the class of ultrafilters.
It is obvious that

Lemma 21. Every filter is F-rich and U-rich. The reflector UF is the identity
functor; and the reflector UU is the pseudotopologizer.



8 SZYMON DOLECKI, FRANCIS JORDAN, AND FRÉDÉRIC MYNARD

Moreover,

Lemma 22. If J contains principal ultrafilters and there exists a filter F such that
J(F) = ∅, then F is not J-rich. In particular, there exist non F0-rich, non F1-rich,
non E-rich filters.

Proof. Under these assumptions on J, let f : X → {∗}. Then {∗}↑ ∈ J(f(F)) but
J(F) = ∅. �

Theorem 23. Let D be a class of J-rich filters. Then f : BaseDUJξ → UJτ is
continuous whenever f is J-continuous.

Proof. Assume that f : BaseJξ → τ is continuous and that x ∈ limUJξD, where
D ∈ D. Let J ∈J(f(D)). Because D is J-rich, there exists G ∈J(D) such that J ≥
f(G) ≥ f(D). But x ∈ limBaseJξG so that f(x) ∈ limτJ by J-continuity of f . Hence,
f(x) ∈ limUJτD. �

Corollary 24. Let D be an F0-composable class of J-rich filters. Let ξ ≥ BaseDUJξ
and τ ≤ BaseDUJτ. If f : |ξ| → |τ | is J-continuous, then f : ξ → τ is continuous.

Proof. If f is J-continuous, then f : BaseDUJξ → UJτ is continuous by Theorem
23, hence f : BaseDUJξ → BaseDUJτ is continuous because D is F0-composable. In
view of the assumptions, we have

fξ ≥ f(BaseDUJξ) ≥ BaseDUJτ ≥ τ

so that f : ξ → τ is continuous. �

If R is a (symmetric) relation on X and A ⊂ X, we denote by AR the polar of
A, that is, the set {x ∈ X : a ∈ A =⇒ xRa}. Consider the relation 4 on F(X)
introduced in [14] by F4H if

F#H =⇒ ∃L ∈ F1 : L ≥ F ∨H.

Recall that F0 denotes the class of principal filters and that F1 denotes the class of
countably based filters. Therefore, in this notation F40 is the class of Fréchet filters
and F41 is the class of strongly Fréchet filters. Let also R (E) denote the class of
E-rich filters, where E is the class of filters generated by sequences. In view of the
results of Section 5, we have F1 ⊂ R (E) ⊂ F41 ⊂ F40 so that

UF40
≥ UF41

≥ UR(E) ≥ UF1 ≥ UE

and
Seq = BaseE ≥ BaseF1 ≥ BaseR(E) ≥ BaseF41

≥ BaseF40
.

Note also that UF40
ξ = UEξ if ξ = Pξ. Moreover, Proposition 14 can be generalized

as follows

Proposition 25. Let J be a class of filters such that J4 6= ∅. Then

BaseJ4UE ≥ AdhJSeq. (4)

Proof. Let F ∈J4 such that x ∈ limUEF and let J ∈J such that J#F . Then, there
exists a countably based and hence a sequence (xn)n∈N finer than J ∨ F . In view
of x ∈ limUEF , we conclude that x ∈ limξ(xn)n. Therefore, x ∈ adhSeqξJ . �

In particular, when J = F0, we have BaseF40
UE ≥ PSeq, so that:

Corollary 26. (1) If ξ ≤ PSeqξ (in particular a pretopology) then ξ ≤ BaseF40
UEξ;
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(2) If ξ ≥ BaseF40
UEξ then ξ ≥ PSeqξ.

When J = F1, we have BaseF41
UE ≥ PωSeq, so that:

Corollary 27. (1) If ξ ≤ PωSeqξ (in particular a paratopology) then ξ ≤
BaseF41

UEξ (in particular, ξ ≤.BaseR(E)UEξ and ξ is sequentially deter-
mined);

(2) If ξ ≥ BaseF41
UEξ ( in particular if ξ ≥ BaseR(E)UEξ) then ξ ≥ PωSeqξ.

Notice that Corollary 27(1) generalizes [3, Proposition 2.3] stating that a pre-
topology is sequentially determined in both directions: it weakens significantly the
assumption and yields a stronger conclusion.

In connection with Proposition 25, note that

J ⊂ F41 =⇒ AdhJSeq = AdhJBaseF1 .

Moreover, the inequality (4) cannot be reversed, even in the simplest case (J = F0)
as shows the following example.

Example 28 (A sequentially determined convergence such that ξ � PSeqξ and
ξ � BaseF40

UEξ). The convergence defined in Example 9 has these properties. In-
deed, if a countably based filter converging to 0 in the usual topology of the real line
does not converge in ξ, then its countable base (An)n∈ω is made of unsummable
sets. In A1, pick finitely many terms x1, x2..., xn1 such that

∑i=n1
i=1 |xi| ≥ 1. Simi-

larly, pick finitely many terms that add up to at least one in each An, and form a
sequence (xp)p∈ω by concatenation. Note that (xp)p∈ω ≥ (An)n∈ω and (xp)p∈ω does
not converge for ξ, so that ξ is sequentially determined. Also, if we had ξ ≤ PSeqξ
then we would have ξ ≤ SeqPωSeqξ and ξ would be Urysohn. Take uncountably
many sequences (xα

n)n∈ω ξ-convergent to 0 with disjoint supports. Then any se-
quence (yn)n∈ω ≥

∧
α∈I

(xα
n)n∈ω must be finer than the infimum of finitely many of

the sequences (xα
n)n∈ω and is therefore convergent to 0. But

∧
α∈I

(xα
n)n∈ω has a basis

of unsummable sets and therefore does not converge to 0. Hence ξ 
 BaseF40
UEξ.

By comparison, we have:

Proposition 29. Example 8 is sequentially determined if and only if the ultrafilter
W is a P -point in β∗ω (6).

Proof. This convergence is sequentially determined if every non-convergent count-
ably based filter admits a non-convergent finer sequence. In other words, for each
H ∈ F1 such that H ≤ W there is a sequence (xn)n∈ω such that H ≤ (xn)n∈ω≤ W,
that is, each countable subfamily of W has a pseudo-intersection. �

Therefore, we can always chose W to make this convergence non sequentially
determined, and we can consistently chose W to make the convergence sequentially
determined.

6A P -point in a topological space is a point at which every countable intersection of neigh-

borhoods is a neighborhood. It is consistent that P -points do not exist in β∗ω , but there are
P -points in β∗ω under (CH). See e.g., [20].
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Example 30 (A convergence τ such that τ ≤ BaseF40
UEτ but τ � PSeqτ). Con-

sider the convergence ξ defined in Example 9, and let τ = BaseF40
UEξ. Then

τ = BaseF40
UEτ by definition. Notice that a sequence converges for τ if and only if

it converges for ξ, that is Seqτ = Seqξ. The infimum of all sequences convergent
to 0 for ξ (or τ) is a Fréchet filter with some non convergent finer sequences (for
instance ( 1

n )n∈ω). Hence it does not converge in τ . Therefore τ � PSeqτ .

When J = E and D = F1, Corollary 24 particularizes to the following:

Corollary 31. Let ξ ≥ BaseF1UEξ (in particular, a first-countable convergence)
and let τ be a sequentially determined convergence, that is, τ ≤ BaseF1UEτ (in
particular, a paratopology). Then every sequentially continuous map f : |ξ| → |τ |
is continuous

When J = E and D = R (E), Corollary 24 particularizes to the following:

Corollary 32. Let ξ ≥ BaseR(E)UEξ (in particular, an R (E)-based convergence)
and let τ ≤ BaseR(E)UEτ (in particular a paratopology). Then every sequentially
continuous map f : |ξ| → |τ | is continuous.

Notice that, in view of Example 33, the first Corollary 31 refines [2, Theo-
rem 1.5.12] that states the same result for a first-countable domain. Corollary 32
provides a new variant with a weaker assumption on the domain and a stronger
assumption on the range, even though this assumption is still satisfied by each
PSeq≥I -convergence and each paratopology. Moreover, in view of Example 30, it
applies to cases that cannot be handled by Corollary 12 (2).

Example 33 (A non first-countable convergence ξ ≥ BaseF1UEξ). Let H be a
uniform (7) countably based filter on an uncountable set X. Define on X ∪{∞} the
convergence ξ in which every point but ∞ is isolated and ∞ ∈ limξF if either F is
finer than a sequence finer than H, or F is a uniform ultrafilter of H. Then, ξ is not
first-countable, because uniform ultrafilters of H are not finer than any sequence,
and therefore are not finer than any countably based convergent filter. On the other
hand, by definition of ξ, ∞ ∈ limUEξH, since every (non principal) ξ-convergent
filter is finer than H. It shows that ξ ≥ BaseF1UEξ.

Also, Corollary 24 and therefore also its instances Corollaries 31 and 32, are best
possible in the following sense:

Proposition 34. (1) If there exists a non J-rich D-filter on X then there exists
ξ ≥ BaseDξ on X, τ ≤ UJτ, and f : |ξ| → |τ | that is J-continuous but not
continuous.

(2) Assume J ⊂ D. If ξ � BaseDUJξ then there exists τ = BaseDUJτ and
f : |ξ| → |τ | that is J-continuous but not continuous.

(3) Assume J ⊂ D. If τ 
 BaseDUJτ then there exists ξ = BaseDUJξ and
f : |ξ| → |τ | that is J-continuous but not continuous.

Note that the assumption J ⊂ D is natural in view of Lemma 19.

Proof. (1). Assume that there exists a non J-rich filter D ∈D, that is, there exists
f : X → Y, D ∈ D(X), and J ∈J(f(D)) such that for every G ∈J(D), J /∈J(f(G)).
Let x0 ∈ X and let ξ denote the atomic topology on X defined by Nξ(x0) =

7A filter on X is called uniform if all of its elements have the cardinality of X.



SEQUENTIAL CONTINUITY 11

D∧{x0}. By definition, ξ ≥ BaseDξ (and therefore ξ ≥ BaseDUJξ). Let τ be the
atomic convergence on Y for which f(x0) ∈ limτF if for every J ∈J(F), there
exists G ∈J(D) such that J ≥f(G). Then τ ≤ UJτ (and therefore τ ≤ BaseDUJτ).
Moreover, f : |ξ| → |τ | is J-continuous. But f is not continuous, because f(x0) /∈
limτf(D).

(2). If ξ � BaseDUJξ, let τ = BaseDUJξ. Then

BaseJτ = BaseJBaseDUJξ = BaseJUJξ = BaseJξ,

because BaseJ ≥ BaseD and because of Proposition 18. Hence the identity map
i : |ξ| → |τ | is J-continuous, but not continuous.

(3). If τ 
 BaseDUJτ , let ξ = BaseDUJτ. Then BaseJξ = BaseJτ so that the
identity map i : |ξ| → |τ | is J-continuous, but not continuous. �

5. E-rich filters

In view of the results of Section 4, the class R(E) of E-rich filters is the biggest
class of filters J such that BaseJUE is a functor and therefore plays an essential
role in investigating the range of results akin to Theorem 13 (see Corollary 31). In
this section, we characterize E-rich filters and compare them with other types of
(Fréchet) filters.

Let A and B be two families of subsets of X. We say that A almost meshes with
B, in symbol A#∗B, if every B ∈ B meshes with all but finitely many elements of
A. Recall that a filter F is substantial if U(F) is infinite.

Theorem 35. Let F be a filter on X. The following are equivalent:
(1) F is E-rich;
(2) F is Fréchet and for every sequence (An)n∈ω of disjoint non empty subsets

of X
(An)n∈ω#∗F =⇒ ∃xn ∈ An : (xn)n∈ω ≥ F ; (5)

(3) For each A#F , the filter F∨A is substantial or principal and (5) is satisfied
for every sequence (An)n∈ω of disjoint non empty subsets of X.

Notice a filter that satisfies (5) for every sequence of disjoint sets may not be E-
rich. Therefore the additional assumptions are essential. Indeed, in view of Lemma
22, a free ultrafilter is never E-rich. However, on a set of measurable cardinality,
there is a free countably deep ultrafilter. Such an ultrafilter U satisfies (5) for every
sequence of disjoint sets because no such sequence can almost mesh with U .

Before we prove Theorem 35, let us point out a property of filters satisfying
(5) for every sequence (An)n∈ω of disjoint subsets. Recall (8) that a filterF is αi

(i = 1, 2, 3, 4) if for each countable collection (Ei)i∈ω of sequences finer than F ,
there is a sequence E ′ ≥ F whose range intersects

• α1 : the range of each sequence Ei in a cofinite set;
• α2 : the range of each sequence Ei in an infinite set;
• α3 : the range of infinitely many sequences Ei in an infinite set;
• α4 : the range of infinitely many sequences Ei.

Lemma 36. Every filter on X satisfying (5) for every sequence (An)n∈ω of disjoint
subsets of X is α2.

8Properties αi (i=1,2,3,4) were introduced in [1] for spaces. They correspond to neighborhood
filters being αi-filters.
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Proof. Let (Bn)n∈ω be the ranges of countably many sequences finer than F . By
[19, Lemma 1.2], we can assume the Bn’s to be pairwise disjoint. Partition each
Bn into countably many infinite subsets Bk

n. Each Bk
n is the range of a sequence

finer than F . Hence {Bk
n : n, k ∈ ω} is the collection of ranges of countably many

disjoint sequences finer than F ; so that they all mesh with F . By (5) , we can pick
one element in each Bk

n to form a sequence (xn)n∈ω finer than F . By construction,
the range of that sequence intersects each Bn in an infinite set. �

Proof of Theorem 35. (1 =⇒ 2) Suppose F is an E-rich filter on X. Let (An)n∈ω

be a sequence of non empty pairwise disjoint sets such that (An)n∈ω#∗F . Pick
xn ∈ An for each n ∈ ω. Define Y = {xn : n ∈ ω} ∪

(
X \

(⋃
n∈ω An

))
. Define

f : X → Y so that f(An) = {xn} for every n and f(x) = x for all x ∈ X \(⋃
n∈ω An

)
. Since (An)n∈ω#∗F , (xn)n∈ω ≥ f(F). Since F is E-rich, there is a

sequence (wn)n∈ω ≥ F such that (f(wn))n∈ω ≤ (xn)n∈ω. Let N ∈ ω be large
enough that {xn : n ≥ N} ⊆ {f(wn) : n ≥∈ ω}. So, for each n ≥ N there is kn ∈ ω
such that f(wkn

) = xn. By the definition of f , wkn
∈ An for all n ≥ N . Let

(zn)n∈ω be the sequence defined by zn = wnk
if n ≥ N and zn = xn if n < N . It is

easily verified that (zn)n∈ω satisfies (5).
Moreover, F is Fréchet. Indeed, if A#F define f : X → (X \ A) ∪ {∞} by

f(x) = x if x /∈ A and f(x) = ∞ if x ∈ A. Then {∞}↑ is a sequence finer
than f(F) so that there exists (xn)n∈ω ≥ F such that (f(xn))nω = {∞}↑, that is,
xn ∈ A.

(2 =⇒ 3) because every Fréchet filter satisfies A#F =⇒ F ∨A is substantial or
principal.

(3 =⇒ 1) Suppose F is a filter on a set X satisfying (5) such that F∨A is
substantial or principal whenever A#F . We first show that F is Fréchet. Indeed,
if F∨A is principal, there is a (constant) sequence finer than F ∨ A. If F ∨ A is
substantial then the free filters of U(F ∨A) form an infinite subset without isolated
points of the Hausdorff topological space βX. Hence, we can find a sequence (βAn)n

of pairwise disjoint open subsets of U(F ∨A). The sequence (An)n∈ω is a sequence
of pairwise disjoint subsets of A meshing with F . By (5), there is a sequence finer
than F∨A. Thus F is Fréchet.

Let Y be a set and f : X → Y be a function. Suppose (yn)n∈ω is a sequence on
Y finer than f(F). Since (yn)n∈ω ≥ f(X), we may assume that yn ∈ f(X) for all
n. In particular, f−1(yn) 6= ∅ for all n. Let T be the elements of {yn : n ∈ ω} that
appear infinitely many times in the sequence (yn)n∈ω and S = {yn : n ∈ ω} \ T .

Notice that f−1(y)#F for each y ∈ T . Since F is Fréchet, there is for each y ∈ T
a sequence (xy

n)n∈ω ≥ f−1(y)
∨
F . Let T1 be the set of all y ∈ T such that (xy

n)n∈ω

has a term xy that is repeated infinitely often. Let G = {xy : y ∈ T1}↑. Notice that
G ≥ F .

Let T2 = T \ T1. If T2 is finite, let E1 =
∧

y∈T2
{xy

n : n ∈ ω}. Notice that E1 ≥ F
and f−1(y) has infinite intersection with the range of E1 for all y ∈ T2. Suppose
T1 is infinite. In this case, since F is α2, there is a sequence E2 ≥ F such that the
range of E2 has infinite intersection with f−1(y) for every y ∈ T2. In either case,
we can find a sequence E3 such that E3 ≥ F such that the range of E3 has infinite
intersection with f−1(y) for every y ∈ T2. Clearly, E3 ≥ F . Let (ynl

)l∈ω be the
subsequence of (yn)n∈ω consisting of terms from T2. Let J be a tail of E3. Since
every element of f−1(T2) appears infinitely often in E3, f(J) = T2 = {ynl

: l ∈ ω}.
Thus, f(E3) ≤ (ynl

)l∈ω. Let E4 = E3

∧
G. Clearly, E4 ≥ F . Notice that for every
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tail J of E4 we have f(J) = T2 ∪ T1. It follows that f(E4) is coarser than the
subsequence E5 of (yn)n∈ω consisting of elements of T .

If S is finite, then yn /∈ S for almost all n ∈ ω. In this case, f(E4) ≤ E5 =
(yn)n∈ω. So, we may assume that S is infinite. Let E6 = (yn)n∈ω

∨
S. Let (ynk

)k∈ω

be a subsequence of E6 in which each element of S appears exactly once. Since
each element of S appears at most finitely many times in (ynk

)k∈ω = E6. Notice
that (f−1(ynk

))k∈ω#F . By (5), there is a sequence (wnk
)k∈ω ≥ F such that

wnk
∈ f−1(wnk

) for all k ∈ ω. Let I be a tail of (wnk
)k∈ω. Clearly, f(I) is

a tail of (ynk
)k∈ω = E6. So, (f(wnk

))k∈ω ≤ E6. Now, E4

∧
(wnk

)k∈ω ≥ F and
(f(wnk

))k∈ω

∧
E4 ≤ E6

∧
E5 = (yn)n∈ω. Thus, F is E-rich. �

Note that in particular neighborhood filters in a subsequential (9) topological
space satisfy A#F =⇒ F∨A is substantial or principal.

Example 37. Every first-countable and every cofinite filter is E-rich.

Let X be a metric space with metric d. Given subsets A and B of X we define
d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}. We define the diameter of a set A by
diam(A) = sup{d(x, y) : x, y ∈ A}. Finally, by B(x, r) we denote the open ball
about x with radius r. Following [13], we denote by Γ(X) the filter generated on
the set O(X) of open subsets of X by sets of the form {U ∈ O(X) : U ⊃ F} where
F ranges over finite subsets of X.

Proposition 38. If X is a metric space, then Γ(X) is E-rich if and only if X is
countable.

Proof. Suppose X is metric and Γ(X) is E-rich. We will prove that X is countable.
For every k ∈ ω define Uk to be the collection of all open sets U such that U is
the union of finite collection IU of open balls I such that diam(I) ≤ 1/2k and
d(J, I) > 1/2k−1 for every pair of distinct element I, J ∈ IU . When we refer to a
ball of U we mean an element of the finite collection IU .

We claim that (Uk)k∈ω almost meshes with Γ(X). Let F ⊆ X be finite. Suppose
F = {x1, . . . , xn}. Let l be large enough that d(xi, xj) > 1/2l for all 1 ≤ i < j ≤ n.
Suppose k ≥ l. For each 1 ≤ i ≤ n let Ui = B(xi, 1/2k+3). and U =

⋃n
i=1 Ui. Now

d(Ui, Uj) > 1/2l − 1/2k+2 = (2k+2−l − 1)/2k+2 > 1/2k+1 for each 1 ≤ i < j ≤ n.
Notice diam(Ui) ≤ 1/2k+2 for each 1 ≤ i ≤ n. So, U ∈ Uk+2 and F ⊆ U . Thus,
(Uk)∞k=1 almost meshes Γ(X).

Let k ≥ 1. Suppose U ∈ Uk and I is a ball of U . Let V ∈ Uk+1 and J be a ball
of V . Suppose I ∩ J 6= ∅. Assume that K is a ball of V distinct from J . Since
d(J,K) > 1/2k ≥ diam(I), K∩I = ∅. Thus, any ball of any U ∈ Uk has non empty
intersection with at most one ball of any V ∈ Uk+1.

Since −(X) is E-rich, there is a selection Uk ∈ Uk such that (Uk)∞k=1 ≥ Γ(X). So,
X = limUk. Let Xn =

⋂
n≤k Uk. Let In be a ball of Un. Assume that x,w ∈ Xn∩In.

Since x,w ∈ Un+1 ∩ In, by the previous paragraph there is a single ball In+1 of
Xn+1 that contains x and w. Continuing inductively, we may construct a sequence
of balls (Ik)k≥n such that x,w ∈ Ik and Ik is a ball of Uk. Since limdiam(Ik) = 0,
x = w. Since Un has finitely many balls, Xn is finite. Thus, X is countable. �

The converse of Theorem 36 is (consistently) false, as shows the following exam-
ple.

9i.e., a subspace of a sequential topological space.
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Example 39 (An α1 and Fréchet filter that is not E-rich under ω1 < p). Here p
denotes the pseudo-intersection number and b denotes the bounding number [16, p.
115]. Under this assumption, there exists [12] an uncountable (of cardinality ω1)
γ-set X in R. By [13, Lemma 21], Γ(X) is Fréchet. Because |X| < p ≤ b, Γ(X)
is α1 by [19, Theorem 1.8]. In view of Proposition 38, Γ(X) is not E-rich.

6. Appendix

Two families A and B of subsets of X mesh, in symbols A#B, if A ∩ B 6= ∅
whenever A ∈ A and B ∈ B. A filter on X is a family of subsets of X that is closed
under finite intersection and supersets. The only filter containing the empty set
is said to be degenerate. Filters on a set X are partially ordered by inclusion of
families of sets. We denote the infimum of two filters F and G by F ∧ G and the
supremum (which exists only if F#G) by F ∨ G. We frequently identify subsets
of X with their principal filters. We also identify a sequence (xn)n∈ω with the
corresponding sequential filter {{xn : n ≥ k} : k ∈ ω}↑. Elements of a class D of
filters are called D-filters. The set of filters on X of the class D is denoted D(X). In
particular F, U, F1, E, F0 denote the classes of all filters, of ultrafilters, of countably
based, of sequential, and of principal filters respectively. If F is a filter on X, we
denote by D(F) the set of filters of D(X) that are finer than F .

Each filter can be decomposed as F = F◦ ∧ F• where F◦ is free, that is, if
∩F = ∅, and F• is principal. Namely, the principal part of a filter F is F• = ∩F .
This filter is the degenerate filter only if F is free. The free part F◦ of a filter F is
F ∨ (∩F)c. This filter is the degenerate filter only if F is principal.

A convergence structure on a set X is a relation lim between X and the set F(X)
of filters on X that satisfies x ∈ lim{x}↑ (10) for every x ∈ X and limF ⊂ limG
whenever F ≤ G. A map f : (X, ξ) → (Y, τ) between two convergence spaces is
continuous if f (limξF) ⊂ limτf(F) (11) for every F ∈F(X).

Let Conv denote the category of convergence spaces and continuous maps. If
ξ is a convergence space (an object of Conv), we denote by |ξ| its underlying set
(that is, |.| denotes the forgetful functor to Set). If ξ and τ are such that |ξ| = |τ |,
we say that ξ is finer than τ or that τ is coarser than ξ, in symbols ξ ≥ τ , if
the identity map i|ξ| : ξ → τ is continuous. This partial order makes the set of
convergences on a given set a complete lattice for which lim∨i∈IξiF =

⋂
i∈I

limξiF

and lim∧i∈IξiF =
⋃
i∈I

limξiF .

We call modifier of Conv a map M : Ob(Conv) → Ob(Conv) such that
|Mξ| = |ξ| for every ξ and ξ ≤ τ =⇒ Mξ ≤ Mτ . A class of convergence spaces that
is closed under supremum is called projective. Dually, a class of convergences closed
under infima is called coprojective. If S is a projective class of convergences con-
taining indiscrete convergences, then for every convergence ξ, there exists the finest
convergence Mξ (on |ξ|) coarser than ξ. The map M is a contractive (Mξ ≤ ξ)
and idempotent (MMξ = Mξ) modifier. Such modifiers are called projectors, and
the class of fixed convergence spaces for a projector is projective. Dually, we call
coprojector an idempotent and expansive (ξ ≤ Mξ) modifier, and the class of fixed
convergence spaces for a coprojector is coprojective. For instance, topological spaces

10If A ⊂ 2X , then A↑ = {B ⊂ X : ∃A ∈ A, A ⊂ B}.
11Where f(F) denotes the filter {f(F ) : F ∈ F}↑.
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can be viewed as particular convergence spaces. The class of topological spaces is
projective in Conv. Explicitly, the topological projection Tξ of a convergence ξ
is formed by the open subsets of ξ, that is, those that are element of every filter
that ξ-converges to one of their points. On the other hand, sequentially based, and
more generally D-based, convergences form a coprojective subclass of Conv. The
sequentially based coprojection Seqξ of ξ is defined by

limSeqξF =
⋃

(xn)n∈ω≤F

limξ(xn)n∈ω,

where a sequence (xn)n∈ω is identified with the filter {{xk : k ≥ n} : n ∈ ω}↑. More
generally, to a class D of filters that does not depend on the convergence (12), S.
Dolecki associated in [7] two fundamental modifiers of the category of convergence
spaces; a projector AdhD:

limAdhDξF =
⋂

D�D#F

adhξD, (6)

where the adherence of a filter D is given by

adhξD =
⋃
H#D

limξH;

and a coprojector BaseD where

limBaseDξF =
⋃

D�D≤F
limξD. (7)

Note that if F is a modifier (a functor) then F≤I = {ξ : Fξ ≤ ξ} is coprojective
(coreflective) and F≥I = {ξ : Fξ ≥ ξ} is projective (reflective). If C is a class of
convergences, we will often talk of a C-convergence for an element of C. If C is
(co)projective, we use the convention that the same non-bold letter C stands for the
corresponding (co)projector. If a (co)projector F appears as the primary object,
we use the same bold letter to denote the corresponding (co)projective class.

Example 40 (projectors). (1) Let D be the class F0 of principal filters. Then
the projective class associated with AdhD is that of pretopologies [5], also
called Čech closure spaces after [4]. Therefore, we will often use P for the
projector AdhF0 .

(2) Let D be the class F1 of countably based filters. Then the projective class
associated with AdhD is that of paratopologies introduced in [7]. Therefore,
we will often use Pω, as in [7], for the projector AdhF1 .

(3) Let D be the class F of all filters. Then the projective class associated with
AdhD is that of pseudotopologies [5]. We will often use S for the projector
AdhF. It is easy to see that S = AdhF = AdhU where U is the class of
ultrafilters.

Example 41 (coprojectors). (1) Let D be the class E of filters generated by
sequences. Then the coprojective class associated with BaseD is that of se-
quentially based convergences, and the corresponding coprojector is denoted
Seq.

12In the general scheme, the class D may depend on the convergence in the sense that the D-

filters on (|ξ|, ξ) may be different from the D-filters on (|ξ|, τ). See [7], [10] for specific conditions
on D to make AdhD a projector and to make BaseD a coprojector.
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(2) Let D be the class F1 of countably based filters. Then the coprojective class
associated with BaseD is that of first-countable convergences.

(3) Let D be the class F0 of principal filters. Then the coprojective class asso-
ciated with BaseD is that of finitely generated convergences in the sense of
[18]. Finitely generated pretopological spaces can be identified with (possibly
infinite) directed graphs.

A modifier M is a functor (13) if the continuity of f : ξ → τ implies that of
f : Mξ → Mτ .

If f : X → τ there exists the coarsest convergence f−τ on X making f contin-
uous. Dually, if f : ξ → Y , there exists the finest convergence fξ on Y making f
continuous. In this notation,

f : ξ → τ is continuous ⇐⇒ ξ ≥ f−τ ⇐⇒ fξ ≥ τ. (8)

Therefore, given a modifier M of Conv,

M is a functor ⇐⇒ ∀f :ξ→Y f(Mξ) ≥ M(fξ) (9)

⇐⇒ ∀f :X→τ M(f−τ) ≥ f−(Mτ). (10)

If for every f : X → τ and every D ∈D(τ) the filter f−D is a D-filter on X, then
AdhD is a functor and is then called a reflector. If for every f : ξ → Y and every
D-filter D on |ξ| the filter f(D) is a D-filter, then BaseD is a functor and is then
called a coreflector. Hence, P, Pω, S (and also T ) are reflectors and Seq, BaseF0 ,
BaseF1 are coreflectors.

Recall that a topological space X is
• sequential if every sequentially closed subset is closed;
• Fréchet if whenever x ∈ X, A ⊂ X and x ∈ clA, there exists a sequence

(xn)n∈ω on A such that x ∈ lim(xn)n∈ω;
• strongly Fréchet if whenever x ∈

⋂
n∈ω

clAn for a decreasing sequence of

subsets An of X, there exists xn ∈ An such that x ∈ lim(xn)n∈ω;
• bisequential if every convergent ultrafilter contains a countably based filter

that converges to the same point;
• weakly bisequential [17] if whenever x ∈ adhF where F is a countably deep

filter (14), there exists a countably based filter H#F such that x ∈ limH.

Hence, a topology ξ is sequential if and only if ξ and Seqξ have the same closed
sets, that is, Tξ = TSeqξ, and since ξ = Tξ ≤ TSeqξ for every topology, if and
only if

ξ ≥ TSeqξ. (11)
It is easy to see that (11) is equivalent to

ξ ≥ TBaseF1ξ. (12)

Moreover, (11) and (12) are meaningful and equivalent for general convergences, and
therefore can be used to extend the definition of sequential spaces from topological
to convergence spaces.

Similarly, a topology ξ is Fréchet if adhξA ⊂ adhSeqξA. This means that ξ ≥
PSeqξ or equivalently that ξ ≥ PBaseF1ξ.

13Of course, our definition of functor is much more restrictive than the accepted definition.

Indeed, we restrict ourselves to concrete endofunctors of Conv.
14A filter F is countably deep if

⋂
A ∈ F whenever A is a countable subfamily of F .
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More generally,
J ∈ J =⇒ adhξJ ⊂ adhBaseDξJ

is equivalent to
ξ ≥ AdhJBaseDξ.

In particular, the functorial inequality

ξ ≥ AdhJBaseF1ξ (13)

extends the notions of sequentiality, Fréchetness, strong Fréchetness, weak bisequen-
tiality and bisequentiality from topological to convergence spaces when J ranges
over the classes of principal filters of closed sets, principal filters, countably based
filters, countably deep filters and all filters respectively.

Other classical notions can be characterized by functorial inequalities of the form

ξ ≥ JEξ (14)

where J is a reflector and E is a coreflector (e.g., [7], [10]).
Dually, important properties of convergences can be characterized by functorial

inequalities of the type
ξ ≤ EJξ (15)

where J is a reflector (or projector) and E is a coreflector. For instance, a conver-
gence space is called countably Choquet [2, page 49] or countably pseudotopological
if a countably based filter converges to x whenever each finer ultrafilter does. Evi-
dently, (X, ξ) is countably pseudotopological if and only if

ξ ≤ BaseF1Sξ. (16)

Several other examples are presented in the paper.
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