
SEQUENCES FREED FROM ORDER

SZYMON DOLECKI AND FRÉDÉRIC MYNARD

Abstract. Traditional definition of convergence of a sequence uses the
order on the set of its indices, but the only structure, needed on that
set to characterize convergence, is the cofinite topology. The only as-
pect of a sequence from convergence point of view is that of the filter it
generates. Sequential filters, the filters generated by sequences, are pre-
cisely the images of cofinite filters of countably infinite sets. One cannot
totally substitute sequences by the corresponding filters, because se-
quences serve to list, but often it is useful to replace them by quences,
that is, maps from countably infinite sets.

1. On definitions of sequence and subsequence

A sequence on a set X is usually defined as a map from the ordered set of
natural numbers N to X and denoted by (xn)n∈N . Of course, a sequence can
be, and typically is, specified as the ordered list of its terms x0, x1, x2, . . .

Example 1.1. Consider the following sequences

1, 1
2 ,

1
3 , . . .

1
n , . . .(1.1)

1, 1
2 , 1,

1
2 , 1,

1
2 , . . .(1.2)

1, 1
2 ,

1
2 ,

1
3 ,

1
3 ,

1
3 , . . . ,

1
n , . . . ,

1
n︸ ︷︷ ︸

n times

, . . .(1.3)

1, 1, 1
2 , 1,

1
2 ,

1
3 , 1,

1
2 ,

1
3 ,

1
4 . . . , 1, . . . ,

1
n︸ ︷︷ ︸

n terms

, . . .(1.4)

on the set R (of real numbers). The sequence (1.1) is one-to-one, while (1.3)
is finite-to-one. The remaining ones are not finite-to-one. The sequence (1.2)
has finite range and the preimage of every element of the range is infinite.
The range of (1.4) is { 1

n : n ∈ N1} and the preimage of an element 1
n of the

range is infinite.

The standard definition of sequence has some inconveniences. Following
Peano [5], let

(1.5) Nk := {n ∈ N : n ≥ k} .

Example 1.2. Consider the sequence (1.1). In fitting it to the formal
definition, it would be natural to set xn = 1

n , but then one cannot use the
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whole N as the set of indices, because 0 ∈ N. So either we define this sequence
as
(

1
n

)
n∈N1

, which does not completely agree with the definition above, or

as
(

1
n+1

)
n∈N

, which is a bit cumbersome.

Traditionally, a sequence (yk)k∈N is called a subsequence of a sequence
(xn)n∈N if there exists a strictly increasing map h : N → N such that yk =
xh(k) for each k ∈ N. On setting nk := h(k), we get yk = xnk

, that is a usual
notation for a subsequence. On defining g (k) := yk and f (n) := xn, we get
the following diagram.
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Example 1.3. In Example 1.1, (1.1) is a subsequence of (1.3), which is a
subsequence of (1.4). On the other hand, (1.2) is not a subsequence of (1.3),
but is easily seen to be a subsequence of (1.4).

To mitigate nuisances described in Example 1.2, Greco gave in [4] the
following

Definition 1.1. A sequence on X is a map from an arbitrary infinite
subset N of N to X.

We shall adopt Definition 1.1 in the sequel. Except for the need of writing
down a specific sequence, it is irrelevant which particular infinite subset N
of N is chosen to index a sequence. Hence, instead of writing (xn)n∈N , for
general considerations it is sufficient to write (xn)n, with the understanding
that the index set is infinite.

If ϕ : N→ N is an increasing bijection and (xn)n∈N is a sequence on X,

then
(
xϕ(n)

)
n∈N is a sequence in the traditional sense. In Greco’s framework,

Definition 1.2. A sequence (xn)n∈N1
is called a subsequence of a se-

quence (xn)n∈N0
whenever N0 ⊃ N1.

Of course, the injection from N1 into N0 is a strictly increasing map
(with respect to the order induced from N). Therefore, if ϕ : N→ N0 is an
increasing bijection and (xn)n∈N0

and ψ : N→ N1 is an increasing bijection
and (xn)n∈N1

, then (xn)n∈N1
is a subsequence of (xn)n∈N0

if and only if(
xψ(n)

)
n∈N is a subsequence of

(
xϕ(n)

)
n∈N in the traditional sense; if h is as

in the traditional definition, then ψ−1 ◦ h ◦ ϕ is the injection from N1 into
N0.

Therefore, the adopted approach to sequences and subsequences provides
a framework that is equivalent to the traditional one, but simplifies the
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description on reducing diagrams to set inclusions. Although more versatile
than the traditional ones, Greco’s definitions have also some inconveniences.

For example, in general there is no common subsequence of a countable
sequence of sequences, each of which is a subsequence of the preceding one.

Let (Nk)k∈K be a sequence of infinite subsets of N such that Nk ⊃ Nl

if k < l. Accordingly, (xn)n∈Nl
constitutes a subsequence of (xn)n∈Nk

. A

diagonal procedure uses a sequence (xn)n∈N∞ where N∞ = {nk : k ∈ K} is
an increasing selection of elements of (Nk)k∈K , that is, nk ∈ Nk and nk < nl
if k < l. It turns out that, in general, (xn)n∈N∞ cannot be represented as
a common sequence of (xn)n∈Nk

for k ∈ N. In fact, (xn)n∈N∞ is almost a

subsequence of (xn)n∈Nk
for k ∈ N, but not a subsequence.

Example 1.4. If Nk := Nk as in (1.5) and xn := n, then there is no common
subsequence, neither in the adopted nor in the traditional sense, of (xn)n∈Nk

for each k ∈ N. In fact, if (xn)n∈N were such a subsequence and n0 ∈ N ∩N0

then n0 /∈ Nn0+1.

How to get rid of the inconvenience of non-existence of a common subse-
quence in the diagonal procedure, without loosing the benefits (like that of
listing) of sequences?

2. Almost inclusion

As we have seen, the problem of the classical diagonal procedure con-
sists in the fact that the set of indices of the ”common” subsequence is not
included in the corresponding sets of indices, but ”almost included”.

A set X is said to be almost included in a set Y if X \ Y is finite,

X ⊂0 Y.

Two sets X and Y are called almost equal if X ⊂0 Y and Y ⊂0 X, that is
if their symmetric difference (Y \X) ∪ (X \ Y ) is finite.

In the same vein, a sequence (yk)k∈K is an almost subsequence of a se-

quence (xn)n∈N if there exists a strictly increasing map h ∈ NK such that
h (K) ⊂0 N and yk = xh(k) for each k ∈ K such that h (k) ∈ N.

It can be easily proved that

Proposition 2.1. If (Nk)k is a sequence of infinite subsets of N such that
Nl ⊂0 Nk for k < l, then there is an infinite subset N∞ of N such that

N∞ ⊂0 Nk

for each k.

Therefore, we have succeeded to rigorously formalize the diagonal proce-
dure of Example 1.4.

Corollary 2.2. If (fk)k is a sequence of sequences such that fk is an almost
subsequence of fl for k < l, then there is a sequence f∞ that is an almost
subsequence of fk for every k.
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3. Convergence of sequences

A sequence (xn)n on a topological space X converges to an element x of
X if for every neighborhood V of x there is m such that xn ∈ V for each
n ≥ m.

Let us rephrase this standard definition in terms of almost inclusion.

Proposition 3.1. A sequence f ∈ XN converges to x if and only if N is
almost included in f−1 (V ) for every neighborhood V of x.

Notice that this proposition makes no reference to the order on the set of
indices. If we pass now to the complements of the preimages of neighbor-
hoods, we recover the following characterization.

Proposition 3.2. A sequence (xn)n converges to x if and only if

{n : xn /∈ V }
is finite for every neighborhood V of x.

Actually, arbitrary permutations of indices preserve convergence.

Example 3.3. Let (xn)n∈N and (yk)k∈K be sequences on a topological
space. If (xn)n converges to x and h : N → K is a bijection such that
yh(n) = xn for each n, then (yk)k∈K converges to x.

If we analyze Proposition 3.2, we realize that the only condition for a
sequence f ∈ XN to converge to x is that the preimage f−1 (V ) of every
neighborhood of x has finite complement in N, in other words, is cofinite.

4. Cofiniteness

Since cofinite sets play an essential role in convergence of sequences, we
shall investigate them in detail.

Definition 4.1. A subset M of X is cofinite if X \M is finite. Let (X)0
denote the set of all cofinite subsets of X.

Therefore,

Proposition 4.2. A set M is a cofinite subset of X if and only if X is
almost included in M.

Of course, if X is finite, each subset of X is cofinite; in particular, ∅ ∈
(X)0. If, however, X is infinite, then

∅ /∈ (X)0 ,

M ⊃ N ∈ (X)0 =⇒M ∈ (X)0 ,

N0, N1 ∈ (X)0 =⇒ N0 ∩N1 ∈ (X)0 .

If X is an infinite set and ∞ /∈ X, then the cofinite topology of X at ∞ is
defined as the topology on X ∪ {∞} , for which each x ∈ X is isolated and
V is a neighborhood of ∞ if ∞ ∈ V and X \ V is finite.

Recall that h is a partial map from X to Y (in symbols, h : X � Y ) if
there is a subset of X denoted by domh such that h : domh→ Y.
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Definition 4.3. We say that h : X � Y is cofinitely continuous if h−1 (M)
is cofinite in X for each cofinite subset M of Y.

It follows that the domain of a cofinitely continuous partial map is cofinite,
because domh = h−1 (Y ) . Of course, h : X � Y is cofinitely continuous if
and only if h∞ : domh∪{∞X} → Y ∪{∞Y }, where ∞X /∈ X and ∞Y /∈ Y,
defined by

h∞ (x) :=

{
h (x) , if x ∈ domh,
∞Y , if x =∞X ,

is continuous from the cofinite topology at∞X of domh∪{∞} to the cofinite
topology at ∞Y of Y.

It is straightforward that a partial map between infinite sets is cofinitely
continuous if and only if the preimages of finite sets are finite and the domain
is cofinite.

5. Quences

As the order on the set of indices of a sequence is irrelevant from the
convergence point of view, we introduce a more general concept of quence.

Definition 5.1. A quence on a set X is a map from a countably infinite
set to X.

Every sequence is a quence. On the other hand, if f : N → X is a quence
on X and h : N→ N is a bijection, then f ◦ h is a sequence. Accordingly, a
quence is an abstraction of a sequence (in the adopted sense).

Definition 5.2. If X is a topological space, then a quence f : N → X con-
verges to x (or x is a limit of f) if f−1 (V ) is cofinite for every neighborhood
V of x.

We denote by limX f (or simply lim f) the set all the limits of f in X.

In other words, f ∈ XN converges to x whenever f̂ , defined by f̂ (n) :=

f (n) for each n ∈ N and f̂ (∞) := x, is continuous from the cofinite topology
of N at ∞ to X.

In order to carry this observation to its logical conclusion, we need to
extend a concept of subsequence to that of subquence. It would be not
enough to mimic the defining process of Greco’s subsequence by taking a
subset of the set of indices.

Definition 5.3. A quence g : B → X is called a subquence of a quence
f : A→ X, in symbols,

g � f,
if there exists a cofinitely continuous partial map h from B to A such that
g = f ◦ h on domh. Two quences f and g are called equivalent, in symbols,
f ≈ g, if g � f and f � g.
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Of course, a subsequence of a sequence is also its subquence, but not
conversely. It follows immediately from this description that if g � f then
lim f ⊂ lim g.

To see to what extend the notion of subquence transcends that of subse-
quence, consider

Proposition 5.1. If f ∈ XN, then g ∈ XN is a subquence of f if and only
if there exists h : N � N be such that g = f ◦h on domh and limn→∞ h (n) =
∞.

Notice, that the so defined h need not be increasing, even in the broad
sense, nor domh need be the whole of N.

Example 5.4. Sequence (1.1) and (1.3) from Example 1.1, are equivalent
quences. We have observed that (1.1) is a subsequence, hence a subquence,
of (1.3). On the other hand, the map h : N → N defined by h (n) := 1

n
is cofinitely continuous and its composition with (1.1) yields (1.3), that is,
(1.3) is a subquence of (1.1).

On the other hand, each partial map with cofinite domain h such that the
composition of (1.3) with h coincides with (1.4) on its domain, has infinite
preimages of singleton. Therefore, (1.4) is not equivalent to (1.3).

Proposition 5.5. A quence g : M → X is a subquence of a quence f :
N → X if and only if for each A ∈ (N)0 there exists B ∈ (M)0 such that
g (B) ⊂ f (A) .

Proof. Let h be as in Definition 5.3. If A is a cofinite subset of N , then
B := h−1 (A) is cofinite in M. As g = f ◦ h on domh,

g (B) = g
(
h−1 (A)

)
= f

(
h
(
h−1 (A)

))
⊂ f (A) ,

which proves the condition.
Conversely, suppose that the condition holds. Up to a bijection, N = N.

There exists a sequence of cofinite subsets (Mn)n∈N of M such that g (Mn) ⊂
f (Nn). By an immediate induction we can assume that Mn )Mn+1 for all
n and

⋂
n∈NMn = ∅. For each m ∈Mn, let

hn (m) := min {k ∈ Nn : g(m) = f (k)} ,

and let

h (m) := hn (m) if m ∈Mn \Mn+1.

Then, for each n ∈ N the set h−1 (Nn) ⊃ Mn, hence is cofinite, and thus
h is cofinitely continuous. On the other hand, g (m) = f (h (m)) for each
m ∈M0.

On the other hand,

Proposition 5.6. For each subquence g of a sequence f there is subquence
s of g that is a subsequence of f.
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Proof. Let f ∈ XN (where N is an infinite subset of N) and let g ∈ XB

be a subquence of f . Let h : B � N be a cofinitely continuous partial
map such that g = f ◦ h on domh. Accordingly h (B) is infinite and thus
a map s : h (B) → X such that s(n) = f(n) for each n ∈ h (B) , is a
subsequence of f. For each n ∈ h (B) , let j(n) be any element of h−1 (n) .
Then j : h (domh) → B is cofinitely continuous and s = g ◦ j, hence s is a
subquence of g.

Proposition 5.7. If a quence converges to x then its every subquence con-
verges to x.

Proof. Let f : A→ X be a quence and x ∈ lim f, that is, f−1 (V ) is cofinite
in A for each neighborhood V of x. If g : B → X is a subquence of f, that
is, there is a cofinitely continuous map h : B � A such that g = f ◦ h on
domh, then

g−1 (V ) = (f ◦ h)−1 (V ) = h−1
(
f−1 (V )

)
is cofinite, so that x ∈ lim g.

By Proposition 5.7, if a sequence converges to x then its every subquence,
hence its every subsequence, converges to x.

6. Families of sets

If A and D are families of subsets of X, then A is coarser than D (D is
finer than A)

(6.1) A ≤ D
if for each A ∈ A there is D ∈ D such that D ⊂ A. A family A is said to
be isotone if D ⊃ A ∈ A implies that D ∈ A. If A and D are isotone, then
(6.1) if and only if A ⊂ D. If A ≤ D and D ≤ A then we say that A and D
are equivalent and write A ≈ D.

A family F of subsets of X is called a filter on X if

(6.2) (F0 ∈ F) ∧ (F1 ∈ F)⇐⇒ F0 ∩ F1 ∈ F ,
where ∧ stands for the conjunction. It follows from the definition that if F is
a filter then G ⊃ F ∈ F implies that G ∈ F . A filter F is called degenerate
if ∅ ∈ F and nondegenerate otherwise. It is immediate that the degenerate
filter on X is equal to the power set 2X of X. A family B ⊂ F is called a
base of F (or F is called generated by B) if F ≤ B.

Notice that if N is infinite, then the family (N)0 (of cofinite subsets of N)
is a nondegenerate filter. Observe as well, that the family of neighborhoods
of a fixed point of a topological space is a nondegenerate filter.

If A is a family of subsets of X and B is a family of subsets of Y, then we
denote

f [A] := {f(A) : A ∈ A},(6.3)

f−1 [B] := {f−1(B) : B ∈ B}.(6.4)
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Observe that if F is a filter on X and f : X → Y, then f [F ] is a filter
base on Y.

We can now rephrase Proposition 5.5.

Corollary 6.1. Let X,Y be infinite. A partial map f : X � Y is cofinitely
continuous if and only if f [(X)0] ≥ (Y )0, equivalently, (X)0 ≥ f−1 [(Y )0] .

Since for every infinite set N, the family (N)0 is a filter on N , the family
f [(N)0] is a filter base on X for each quence f ∈ XN . In these terms,
Proposition 5.5 becomes

Proposition 6.2. A quence g ∈ XM is a subquence of a quence f ∈ XN if
and only if

(6.5) f [(N)0] ≤ g [(M)0] .

Let us observe that (6.5) amounts to

(6.6)
(
g−1 ◦ f

)
[(N)0] ≤ (M)0 .

If VX (x) stands for the neighborhood filter of x on X, then

x ∈ limX f

for f ∈ XN , is equivalent to

(6.7) VX (x) ≤ f [(N)0] .

A filter F on X is called sequential (1) if it is generated by a quence, equiva-
lently, by a sequence, that is, if there is a quence f ∈ XN such that f [(N)0]
is a base of F . Therefore a quence converges to a point x if the corresponding
sequential filter is finer than the neighborhood filter of x.

Sure enough, equivalent quences generate the same (sequential) filter.
A filter F on X is called free if

⋂
F∈F F = ∅, and is called principal

provided that
⋂
F∈F F ∈ F .

Example 6.3. In Example 1.1,
{{

1
n : n ≥ m

}
: m ∈ N1

}
is a base for the

filters generated by (1.1) and by (1.3). Therefore, these two sequences gen-
erate the same filter, which is, by the way, free and finer than that generated
by (1.4), because (1.1) (and (1.3)) are subsequences of (1.4).

The filter generated by (1.2) is
{
F ⊂ R : {1, 1

2} ⊂ F
}
. The filter generated

by (1.4) is
{
F ⊂ R : { 1

n : n ∈ N1} ⊂ F
}
. Both these filters are principal, the

former being finer than the latter.
The filter V(x) of neighborhoods of a point x in the real line with its usual

topology is neither free (for x ∈
⋂
V ∈V(x) V ) nor principal (for

⋂
V ∈V(x) V =

{x} /∈ V(x)).

It is known [2] that

1Such filters where called elementary filters in [3]. They are often called Fréchet filters.
This term, however, is better suited to the intersections of sequential filters, because a
topology is Fréchet if and only if each neighborhood filter is such an intersection (see, e.g.,
[1]).
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Theorem 6.4. For every filter F on X, there exists a unique pair of (pos-
sibly degenerate) filters F◦ and F• such that F◦ is free, F• is principal,
and

(6.8) F = F◦ ∧ F• and F◦ ∨ F• = 2X .

Here, the supremum G ∨ H is the (possibly degenerate) filter

{G ∩H : G ∈ G, H ∈ H}
and the infimum G ∧H := G ∩H consists of sets that belong to both G and
H.

7. Sequential filters

At the end, from the convergence point of view, a sequence amounts to
the filter it generates. If (xn)n is a sequence on X, then

{{xn : n ≥ k} : k ∈ N}
is a filter base. Hence, each sequential filter contains a countable (possibly
finite) set.

Which filters on a given set are sequential? By the very definition, these
filters are of the form f [(N)0] where with f : N → X. But let us give some
criteria that enables one to directly recognize sequential filters without a
recourse to the definition.

A principal filter F is sequential if and only if F∞ :=
⋂
F∈F F is countable.

Indeed, if the condition holds, then we can arrange F∞ in a sequence, like in
(1.2) or in (1.4). A free filter F is sequential if there is a countably infinite
set F0 ∈ F and then any bijection f : N → F0 defines a base f [(N)0] of F .

In fact,

Theorem 7.1. A filter F is sequential if and only if there is a countable
set F0 ∈ F and F0 ⊂0 F for each F ∈ F .

Proof. Indeed, let F be sequential, that is, generated by f [(N)0] , where N
is countable. Thus F0 := f (N) is countable, and f (N0) ∈ F . Moreover,
for each F ∈ F there is A ⊂ N such that N \ A is finite and f (A) ⊂ F.
Therefore,

F0 \ F ⊂ f (N) \ f (A) ⊂ f (N \A)

is finite.
Conversely, if the condition holds, then either F∞ = ∅, that is each

cofinite subset of F0 belongs to F , or F• := {F ⊂ X : F∞ ⊂ F} and F◦
is generated by {F \ F∞ : F ∈ F} . The latter filter is free and fulfills the
condition. Therefore, F• and F◦ are sequential and fulfill (6.8) and the
sequence generating F = F◦ ∧ F• can be constructed by alternating the
terms of the sequences corresponding to F◦ and to F•.

Corollary 7.2. A filter is sequential if and only if it contains a countable
set and admits a countable base consisting of almost equal sets.
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The countable base in the corollary above can be finite, and in this case,
there is a base consisting of a singleton.

Similar characterizations were formulated in [3].

References

[1] S. Dolecki. An initiation into convergence theory. In F. Mynard and E. Pearl, editors,
Beyond Topology, volume Beyond Topology of Contemporary Mathematics 486, pages
115–161. A.M.S., 2009.

[2] S. Dolecki and G. H. Greco. Cyrtologies of convergences, I. Math. Nachr., 126:327–348,
1986.

[3] S. Dolecki and G. H. Greco. Cyrtologies of convergences, II: Sequential convergences.
Math. Nachr., 127:317–334, 1986.

[4] G. H. Greco. Analisi Matematica Uno, Funzioni di una variabile reale (calcolo differen-
ziale e integrale). Trento, 2012.

[5] G. Peano. Formulario Mathematico. Fratelli Bocca Editori, 1908.

Mathematical Institute of Burgundy, UMR5584, CNRS, University Bour-
gogne Franche-Comté, Dijon, France.
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