
Mathematica Pannonica

19/2 (2008), 241–260

PROPERTIES TRANSFER BETWEEN
TOPOLOGIES ON FUNCTION SPACES,
HYPERSPACES AND UNDERLYING
SPACES

Szymon Dolecki

Burgundy University, Mathematical Institute of Burgundy, CNRS
UMR 5584, B.P. 47870, 21078 Dijon, France

Received : October 2007

MSC 2000 : 54 C 20, 54 C 30, 54 C 35

Keywords : Function spaces, hyperspaces, polar topologies, dual topologies.

Abstract: Each collection α of families of subsets of X determines a topology
α(X, Z) on the space of continuous maps C(X, Z). Interrelations between local
properties of α(X,R) and of α(X, $) (on the hyperspace C(X, $)), and with
properties of a topological space X are studied in a general framework, which
allows to treat simultaneously several classical constructions, like pointwise
convergence, compact-open topology and the Isbell topology.

1. Introduction

The interrelation of properties of Cα(X,Z) with those of X and Z,
is a fascinating theme. Here α is a collection of (openly isotone1) families
of subsets of X, that defines a topology α(X,Z) on C(X,Z) by a subbase

(1.1) {[A, O] : A ∈ α,O ∈ OZ} ,

where [A, O] := {f : f−(O) ∈ A}, f−(O) := {x : f(x) ∈ O}, and OZ is
the set of open subsets of Z.

E-mail address: dolecki@u-bourgogne.fr
1A familyA of open sets is openly isotone if B ∈ A provided that B is open and

there is an element A ∈ A such that A ⊂ B.
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Its very special case, that of Cp(X,R) (the space of real-valued
functions with pointwise convergence) has attracted a lot of researchers,
among whom A. V. Arhangel’skii (e.g., [2]). Its intermediate case of

(1.2) α = αD := {OX(D) : D ∈ D} ,

where D is a family of subsets of X, and OX(D) := {O ∈ OX : D ⊂ O},
is the object of a book of McCoy and Ntantu [17].

Actually the said interrelation corresponds to the upper side of a
quadrilateral

X ↔ Cα(X,R)
l l

Cα(X, $∗) ↔ Cα(X, $)

in which, of course, one can consider also other sides, as well as diagonals.
Here $, $∗ stand for the two homeomorphic variants of the Sierpiński
topology on {0, 1}, so that C(X, $) can be identified with the hyperspace
of X, and C(X, $∗) with the set OX of open subsets of X.

It turns out that it is fruitful to study the three other sides in
order to better grasp the interrelation of the upper side X ↔ Cα(X,R).
Indeed,

(1) Cα(X, $) is homeomorphic to Cα(X, $∗);
(2) One can establish a dictionary of easy translations of elementary

properties of Cα(X, $∗) and α-properties of X;
(3) Under a separation condition (by real functions) one can evi-

dence an intimate relationship between Cα(X,R) and Cα(X, $).
More precisely, if X is completely regular and α is a compact web,

then the neighborhood filter for α(X,R) of the zero function 0̃ (that is,
0̃(x) = 0 for each x ∈ X) belongs to the same transferable class as the
neighborhood filter of ∅ for α(X, $). Roughly speaking a web α on X
is a collection of families of open subsets of X such that for each open
subset Y there is A ∈ α that can be reconstructed from its trace on Y .
A web is compact if its every element A is a compact family.2

Compact (openly isotone) families on a topological spaceX coincide
with the open sets of the Scott topology of C(X, $∗) (see, e.g. [11]). It was
shown in [6] that each such a family is of the form

⋃

K∈D OX(K), where
D is a subfamily of compact subsets of X, if and only if X is consonant.

A collection αD of the type (1.2), where D is a network consisting
of compact subsets of X, is a compact web. Moreover, if D is hereditarily

2Precise definitions are given before Lemma 4.7.
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closed in a completely regular space X, then CαD
(X,R) is, in particular,

a topological group (e.g., [17, Th. 1.1.7]), hence homogeneous. Therefore
in order to prove a local (transferable) property of CαD

(X,R), it is enough
to establish it for the neighborhood filter of the constant function 0̃.

Of course, in general, a hyperspace topology α(X, $) is not homo-
geneous. As α(X, $) and α(X, $∗) are homeomorphic (by complemen-
tation), a property of Nα(X,$)(A) for A ∈ C(X, $) is also a property of
Nα(X,$∗)(X \A) and, as a rule, can be characterized in terms of the space
X \A with the induced topology. Therefore a local property of Cα(X, $)
can be characterized by a hereditary (with respect to open subsets) prop-
erty of X.

For general compact webs α on completely regular spaces, Cα(X,R)
need not be even translation invariant. Therefore, that Cα(X, $) has
a local transferable property does not necessarily imply that Cα(X,R)
has the same property. The implication holds for completely regular
consonant spaces, because then α is of the form (1.2).

Nevertheless, some local properties of hyperspaces pass onto the
corresponding function spaces thanks to a characterization of convergence
of functions valued in topological spaces in terms of the corresponding
hyperspace convergence of the preimages of closed sets. Consequently,
each α-topology on C(X,R) can be, in principle, characterized in terms
of the corresponding α-topology on the hyperspace C(X, $), actually on
its subset consisting of functionally closed subsets of X. By the way, it is
why Georgiou, Iliadis and Papadopoulos studied properties of real-valued
function spaces in terms of topologies on functionally open sets [9].

The present paper restricts its scope to topologies on function
spaces (almost always real-valued) and to the corresponding hyperspace
topologies. This is just one aspect of a general theory of convergence
function spaces and hyperspace convergences that will be discussed in [7].

2. Open-set topologies

We denote the set of open subsets of X by either C(X, $∗) or OX .
We use the latter convention to define OX(x) := {O ∈ OX : x ∈ O}, and
by OX(A) := {O ∈ OX : A ⊂ O}. If now A is a family of subsets of
X, then OX(A) :=

⋃

A∈A OX(A). A family A of subsets of X is openly
isotone if OX(A) = A.

If α is a non-empty collection of openly isotone families of subsets of
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X, then (1.1) is a subbase of a topology on C(X,Z), denoted by α(X,Z).
The corresponding topological space is denoted by Cα(X,Z).

In particular, for a non-empty family D of subsets of X, the collec-
tion α := αD is defined by

(2.1) αD := {OX(D) : D ∈ D} ,

and the symbol CαD
(X,Z) is abridged to CD(X,Z). It is often required

(e.g., [17]) that D be a (closed) network on X, that is, a family of closed
sets such that for each x ∈ X and O ∈ OX(x) there is D ∈ D for which
x ∈ D ⊂ O. However (1.1) is a topology subbase for each α = αD

provided that D 6= ∅.
If A ⊂ X and B ⊂ Z then [A,B] := {f ∈ C(X,Z) : f(A) ⊂ B}.

Therefore, [OX(D), O] = [D,O] and thus
{

[A, O] : A ∈ αD, O ∈ OZ

}

=
{

[D,O] : D ∈ D, O ∈ OZ

}

.

Example 2.1. If D = [X]<ℵ0, then
{

[F,O] : F ∈ [X]<ℵ0 , O ∈ OZ

}

is a base of the topological space Cp(X,Z) of pointwise convergence (here

p abridges [X]<ℵ0).

Example 2.2. If D = KX (the family of compact subsets of X), then
{

[K,O] : K ∈ KX , O ∈ OZ

}

is a base of the topological space Ck(X,Z) of compact-open topology
(here k abridges KX).

We consider two complementary topologies on, respectively, the
hyperspace C(X, $) and the set C(X, $∗) of open subsets of X. Here
$ and $∗ are two homeomorphic avatars of the Sierpiński topology on
{0, 1}:

$ := {∅, {1} , {0, 1}} and $∗ := {∅, {0} , {0, 1}} .

The indicator function ψA of a subset A of X is defined by to be 0 on
A and 1 out of A. If X is a topological space, then ψA ∈ C(X, $) if and
only if A is closed, and ψA ∈ C(X, $∗) := OX if and only if A is open.

The complementation c : 2X → 2X associates Ac := X \ A with
A ⊂ X. In order to avoid ambiguity, we denote the image of A ⊂ 2X by
the complementation by

Ac := {Ac : A ∈ A} .

The topology α(X, $∗) on the set C(X, $∗) (of all open subsets ofX)
has α for a subbase, because, due to our convention, the subbase consists
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of {[A, {0}] : A ∈ α}, and [A, {0}] =
{

ψB ∈ C(X, $∗) : ψ−
B(0) ∈ A

}

(by
definition, ψ−

B(0) = B).
If α is stable for finite intersections, then α is a base of α(X, $∗).

Hence the neighborhood filter Nα(X,$∗)(Y ) of Y ∈C(X, $∗) is generated by

{A ∈ α : Y ∈ A} .
In particular, for α = αD a subbase for open sets is of the form

{OX(D) : D ∈ D} ,

and αD is stable for finite intersections provided that D is stable for finite
unions, so that

NαD(X,$∗)(Y ) ≈ {OX(D) : Y ⊃ D ∈ D} .

The homeomorphic image of α(X, $∗) by the complementation
is a topology on the hyperspace C(X, $) denoted by α(X, $). Accord-
ingly, {Ac : A ∈ α} is a subbase of α(X, $)-open sets on the hyperspace
C(X, $); the neighborhood of H ∈ C(X, $) with respect to α(X, $) is

Nα(X,$)(H) ≈ {Ac : Hc ∈ A ∈ α} .

In particular, a base of NαD(X,$)(A0) consists of

{{A ∈ C(X, $) : A ∩D = ∅} : D ∈ D, A0 ∩D = ∅}

This form of basic neighborhoods is at the origin of the term D-miss
topology.

Remark 2.3. Gruenhage introduced the so-called γ-connection [12]. In
particular, a filter Γ(Y,X), where Y is an open subset of X, is generated
by

{

OX(F ) : Y ⊃ F ∈ [X]<ℵ0
}

,

hence Γ(Y,X) is a neighborhood filter of Y with respect to

α[X]<ℵ0 :=
{

OX(F ) : F ∈ [X]<ℵ0
}

.

3. Preimage-wise characterization

Denote by f−(A) := {x : f(x) ∈ A} and by F−(A) a filter gener-
ated by

{{

f−(A) : f ∈ F
}

: F ∈ F
}

.

What follows is a special case of a theorem (see [7]) about Cα(X, T ) and
Cα(X, $), where X is a convergence space and T is a topological space.

Theorem 3.1. Let α be a collection of openly isotone families on a
topological space X. Let C be a base of closed subsets of R. If F is a
filter on C(X,R), then
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f ∈ limα(X,R) F ⇐⇒ f−(C) ∈ limα(X,$) F
−(C)

for each C.

Proof. By definition, f0 ∈ limα(X,R) F if and only if for each open subset
O of R and every A ∈ α such that f0 ∈ [A, O], there exists F ∈ F
such that f ∈ [A, O] for each f ∈ F . In other words, if f−

0 (O) ∈ A,
then there exists F ∈ F such that f−(O) ∈ A for each f ∈ F , that is,
F−(O) converges to f−

0 (O) in α(X, $∗), equivalently, f−
0 (Oc) converges

to f−
0 (Oc) in α(X, $).

Suppose that f−
0 (C) ∈ limα(X,$) F−(C) for each element C of a base

of closed subsets of R. Let A be a closed subset of R and CA ⊂ C be
such that A =

⋂

C∈CA
C. If x /∈ f−

0 (A) then there is C ∈ CA such that

x /∈ f−
0 (C), hence, by assumption, there exists F ∈ F such that

x /∈ f−(C), and thus x /∈ f− (A) for every f ∈ F , that is, f−
0 (A) ∈

∈ limα(X,$) F−(A). ♦

Corollary 3.2. The (infinite) tightness of α(X,R) is not greater than
that of α(X, $).

Proof. Suppose that the tightness of α(X, $) be λ and let C be a count-
able base of closed subsets of R. If f0 ∈ clα(X,R)B, then by Th. 3.1,
f−

0 (C) ∈ clα(X,$) {f−(C) : f ∈ B} for each C ∈ C. Hence for each C ∈ C
there is BC ⊂ B with card (BC) ≤ λ such that

f−
0 (C)∈clα(X,$)

{

f−(C) :f ∈BC

}

, thus f−
0 (C)∈clα(X,$)

{

f−(C) :f ∈B0

}

,

where B0 :=
⋃

C∈C BC . Th. 3.1 implies that f0 ∈ clα(X,R)B0 and
card(B0) ≤ λ. ♦

Corollary 3.3. The (infinite) character of α(X,R) is not greater than
that of α(X, $).

Proof. Suppose that the character of α(X, $) be λ and let C be a count-
able base of closed subsets of R. Then f ∈ limα(X,R) F if and only if
f−(C) ∈ limα(X,$) F−(C) for each element C ∈ C. By the assumption,
for each C ∈ C there is a filter EC ≤ F−(C) of character not greater than
λ and such that f−(C) ∈ limα(X,$) EC . Let FC ⊂ F be a filter on C(X,R)
such that F ∈ FC whenever there is E ∈ EC for which E ⊂ F−(C). Let
C be ranged in a sequence {Cn : n < ω}. Then there is a sequence (FCn

)n

such that FCn
⊂ FCn+1

⊂ F and f−(Cn) ∈ limα(X,$) F
−
Ck

(Cn) for each

k ≤ n. Consequently
(
⋃

k<ω FCk

)−
(Cn) converges to f−(Cn) in α(X, $)

for each n < ω, and the character of
⋃

k<ω FCk
is not greater than λ. By

Th. 3.1, f ∈ limα(X,R)

⋃

k<ω FCk
. ♦
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As we have seen, no assumptions on X or α were needed to get the
corollaries above. The converse inequality will be established in the case
of compact webs in completely regular spaces.

4. Compact families

An openly isotone family A is compact if each family P of open sets
such that

⋃

P ∈ A has a finite subfamily P0 of P such that
⋃

P0 ∈ A.
We denote by κ(X) the collection of all compact families on X. Here are
fundamental examples:

K compact ⇒ OX(K) ∈ κ(X);

x ∈ limX F ⇒ OX(F∧{x}) ∈ κ(X),

where F∧{x} := {{F ∪ {x}} : F ∈ F}.
The collection of (openly isotone) compact families fulfill the fol-

lowing properties:
∅,OX ∈ κ(X);

α ⊂ κ(X) ⇒
⋃

A∈α

A ∈ κ(X);

A0,A1 ∈ κ(X) ⇒ A0 ∩ A1 ∈ κ(X).

Therefore

Corollary 4.1. κ(X) is the collection of open sets of a topology on
OX = C(X, $∗).

The topology of Cor. 4.1 is called the Scott topology (see [11], [3]).

Example 4.2. If κ = κ(X) is the collection of (openly isotone) compact
families on X, then

{[A, O] : A ∈ κ(X), O ∈ OZ}

is a subbase of the Isbell topology on C(X,Z). In particular, κ(X) is the
collection of open sets of Cκ(X, $

∗).

Lemma 4.3. If A = O(A) is a compact family of subsets of a completely
regular topological space X, and F is a closed subset of X with F c ∈ A,
then there is A ∈ A and h ∈ C(X, [0, 1]) such that h(A) = {0} and
h(F ) = {1}.
Proof. By complete regularity, for every x /∈ F , there is an open neigh-
borhood Ox of x and fx ∈ C(X, [0, 1]) such that fx(Ox) = {0} and
fx(F ) = {1}. Therefore F c =

⋃

x/∈F Ox ∈ A, so that by the compactness
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of A there is n < ω and x1, . . . , xn /∈ F such that A =
⋃

1≤i≤nOxi
∈ A.

The continuous function min1≤i≤n fxi
is 0 on A and 1 on F . ♦

If A is an openly isotone family on X and C is a subset of X, then
A∨ C := OX ({A ∩ C : A ∈ A}) .

Lemma 4.4. If A is a compact openly isotone family on X and C is a
closed subset of X, then A∨ C is compact.

Proof. Indeed, if P is a family of open sets such that
⋃

P ∈
∈ O ({A ∩ C : A ∈ A}), then

⋃

P ∪ (X \ C) ∈ A, hence there exists
a finite subfamily P0 of P such that

⋃

P0 ∪ (X \ C) ∈ A, thus
⋃

P0 ∈
∈ O ({A ∩ C : A ∈ A}). ♦

The concept of network is well-known. Here we introduce a notion
of web that extends and weakens that of network. A collection α of
openly isotone families is a web in X if for every x ∈ X and each O ∈
∈ OX(x) there is A ∈ α such that A is generated by a filter on O. In
particular, αD (2.1) is a web if for each x ∈ X and every O ∈ OX(x)
there is D ∈ D such that D ⊂ O. This is a weaker property than that
of D being a network. A collection of openly isotone families is called a
compact web if it is a web consisting of compact families.

Proposition 4.5. If D is a compact network, then αD is a compact web.

Indeed, in this case, αD is a collection of compact families. It is a
web, because it includes

{

OX({x}) : x ∈ X
}

. For instance,
{

OX(F ) :

: F ∈ [X]<ℵ0
}

and
{

OX(K) : K ∈ K(X)
}

are compact webs. Therefore,

Corollary 4.6. κ(X) is a compact web on X.

In fact, κ(X) is a web, because it includes a web, for example,
{OX(K) : K ∈ K(X)}. The following result extends [17, Th. 1.1.5].

Lemma 4.7. If Z is Hausdorff and α is a web, then Cα(X,Z) is Haus-
dorff.

Proof. If f0 6= f1 then there is x ∈ X such that f0(x) 6= f1(x), and
because Z is Hausdorff, there exist disjoint open sets O0 and O1 such that
f0(x) ∈ O0 and f1(x) ∈ O1. Therefore W := f−

0 (O0) ∩ f
−
1 (O1) ∈ OX(x),

and since α is a web, there exists A ∈ α such that A is generated by a
filter on W . Therefore f0 ∈ [A, O0], f1 ∈ [A, O1] and [A, O1] ∩ [A, O0]
is empty, for if f ∈ [A, O1] ∩ [A, O0] then there exist W ⊃ A0, A1 ∈ A
such that A0 ⊂ f−(O0), A1 ⊂ f−(O1) and A := A0 ∩ A1 ∈ A, hence
f(A) ⊂ O0 ∩O1 = ∅. ♦

A family D of closed subsets of X is called hereditarily closed pro-
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vided that F ⊂ D ∈ D and F is closed implies that F ∈ D.3 It is proved
in [17, Th. 1.1.7] that

Theorem 4.8. If D is a hereditarily closed compact network and Z is a
topological group, then CD(X,Z) is a topological group.

In particular, the topology αD of Th. 4.8 is homogeneous. Of
course, families of all closed compact subsets and of all finite subsets
of T1 topologies are hereditarily closed compact networks, so that, in
particular, Cp(X,R) and Ck(X,R) are topological groups, in fact, topo-
logical vector spaces.

Nevertheless, there exists a topological space X (satisfying high
separation axioms) and a collection α of compact families including all
families generated by compact sets, for which Cα(X,R) is not a transla-
tion invariant. Of course, such a space X must be dissonant.

Example 4.9. Consider the Arens topology on X := {x∞} ∪
⋃

n<ω Xn

where Xn := {xn,k : k < ω}: each x 6= x∞ is isolated, and O ∈ OX(x∞)
whenever there is nO and a map h : ω → ω such that

{x∞} ∪ {xn,k : n ≥ nO, k ≥ h(n)} ⊂ O.
The Arens topology is a prime topology, that is, all the elements

but possibly one are isolated. Each prime topology has strong separation
properties, in particular, is zero-dimensional and paracompact. Every
compact subset of the Arens space is finite. A compact family S is simple
if either S = OX(F ) where F is a compact (hence, finite) subset of X,
or S ⊂ OX(x∞). Every compact family on the Arens space is a union
of simple families. It is known [6] that the Arens topology is dissonant,
in other words, there exists a compact family S that is not of the form
OX(F ) with compact set F , hence S  OX(x∞).

Let D ⊂ OX(x∞) be the compact family such that D∩Xn 6= ∅ for
each n < ω and every D ∈ D, and let α := {D}∪

{

OX(F ) : F ∈ [X]<ℵ0
}

.
Then Cα(X,R) is not translation invariant.

Indeed, let D0 ∈ D be such that Xn r D0 6= ∅ for each n < ω.
Define f(D0) = {0} and f(X r D0) = {1}. Then the translation g 7→
7→ f + g is not continuous at 0̃. Indeed, f + 0̃ ∈ [D, B(0, ε)] where ε = 1

2
.

Take any finite set F and 0 < δ < ε, and consider a neighborhood
Wδ := [D, B(0, δ)] ∩ [OX(F ), B(0, δ)]

of the zero function 0̃. Then there is nF < ω such that XnF
∩ F = ∅.

Let D1 ∈ D be such that XnF
∩D1 ∩D0 = ∅. On the other hand, XnF

∩
∩D0 6= ∅ and XnF

∩D1 6= ∅ by the definition of D. Set g(D1∪F ) = {0}

3By analogy to openly isotone one could call this property closedly antitone.
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and g(x) = 1 elsewhere, so that g ∈ Wδ for each δ > 0. Notice that
f(x) + g(x) ∈ {1, 2} for each x ∈ XnF

, and since XnF
∩D 6= ∅ for every

D ∈ D, (f + g)(D) ∩ {1, 2} 6= ∅ and thus (f + g) /∈ [D, B(0, ε)].

5. Polar topologies

Recall that if Ω ⊂ V ×W , then the Ω-polar Ω∗A of a subset A of
V is the greatest subset B of W such that A× B ⊂ Ω. Dual topologies
can be represented in terms of polarity.

For every open subset O of R we define a relation ΩO := {(x, f) :
: f(x) ∈ O}. Accordingly, for each A ∈ C(X, $∗), the set [A,O] is the
ΩO-polar of A. Indeed,

(5.1) [A,O] =
{

f : A ⊂ f−(O)
}

= Ω∗
OA.

On the other hand, Ω∗
O is a relation on C(X, $∗) × C(X,R), namely

Ω∗
O =

{

(A, f) : A ⊂ f−(O)
}

,

so that if A is a subset of C(X, $∗), then Ω∗
OA =

⋃

A∈A[A,O] = [A, O].
Hence for a filter (base) α on C(X, $∗), our convention yields

Ω∗
Oα ≈ {[A, O] : A ∈ α} .

Finally

Nα(X,R)(0̃) ≈
∨

O∈NR(0)

Ω∗
Oα ≈ {[A, O] : A ∈ α,O ∈ NR(0)} .

In case of homogeneity, it is enough to establish a property of
Nα(X,R)(0̃) in order to prove that property for every neighborhood fil-
ter of Cα(X,R) (for α = αD with a compact network D on a completely
regular space X).

On the other hand, it follows from Th. 3.1 that the function 0̃ ∈
∈ limα(X,R) F implies, in particular, 0̃−(C) ∈ limα(X,$) F−(C) for each
closed subset C of R. If 0 ∈ C then 0̃−(C) = X, hence 0̃−(C) ∈
∈ limα(X,$) F−(C) for every F . Hence the only case to consider is that
of 0 /∈ C that is equivalent to 0̃−(C) = ∅.

This observation implies that properties of Nα(X,$)(∅) are inti-
mately related to properties of Nα(X,R)(0̃), hence to local properties of
Cα(X,R), thanks to homogeneity (for α = αD with a compact net-
work D on a completely regular space X). As α(X, $) and α(X, $∗)
are homeomorphic by complementation, the properties of Nα(X,$)(∅) and
Nα(X,$∗)(X) are the same. On the other hand, Nα(X,$∗)(X) has a filter
subbase α.
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If Γ ⊂ X1 × . . . × Xm is a relation, then for 1 ≤ k ≤ m, let Γk :
: Γ → Xk be the restriction to Γ of the k-th projection of X1 × . . .×Xm.

Consider the fundamental relation Γ⊂C(X,R)×C(X, $∗)×C(R, $∗)
defined by

Γ := {(f, A,O) : f ∈ [A,O]} .

The last component of Γ is valued in (open) subsets of R, and not in
R, because Γ results from a polarity. Therefore, we need to define a filter
on OR(0) such that its projection on R coincides with NR(0). A base for
such a filter (denoted by N̄R(0)) is given by {P ∈ OR(0) : P ⊂ O} with
O ∈ OR(0).

Theorem 5.1. Nα(X,R)(0̃) ≈ Γ1(Γ
−
2 α ∨ Γ−

3 N̄R(0)).

Proof. By definition, Γ−
2 A = {(f, A,O) : f ∈ [A,O], A∈A}, and Γ−

3 O=
= {(f, A,O) : f ∈ [A,O]}, hence Γ1(Γ

−
2 A ∨ Γ−

3 O) = [A, O], so that
Nα(X,R)(0̃) = Γ1(Γ

−
2 α ∨ Γ−

3 N̄R(0)). ♦

Let ∆ be the following subset of C(X, $∗) × C(X, $∗):

∆ :=
{

(A,G) : ∃θ∈C(X,[0,1]) θ(A) = {0} , θ(X \G) = {1}
}

.

Let Θ : ∆ → C(X, [0, 1]) be such that
Θ(A,G)(A) = {0} and Θ(A,G)(X \G) = {1} .

Denote by ∆2 the projection of ∆ on the second component.

Theorem 5.2. If α is a compact web, and X is completely regular, then

α ≈ ∆2(Θ
−Nα(X,R)(0̃)).

Proof. If G ∈ ∆2(Θ
−[A, (− 1

n
, 1

n
)]) then there is an open subset D of

X such that Θ(D,G) ∈ [A, (− 1
n
, 1

n
)], that is, there A ∈ A such that

Θ(D,G)(A) ⊂ (− 1
n
, 1

n
) hence A ⊂ G, and thus G ∈ A. It follows that

∆2(Θ
−[A, (− 1

n
, 1

n
)]) ⊂ A for each n < ω.

Conversely, if G ∈ A then, by Lemma 4.3, there is A ∈ A such that
(A,G) ∈ ∆, thus Θ(A,G)(A) = {0} ,Θ(A,G)(X \ G) = {1}. Hence
Θ(A,G) ∈ [A, (− 1

n
, 1

n
)] for every n < ω. In other words, (A,G) ∈

∈ Θ−[A, (− 1
n
, 1

n
)] and so G ∈ ∆2(Θ

−[A, (− 1
n
, 1

n
)]), showing that A ⊂

⊂ ∆2(Θ
−[A, (− 1

n
, 1

n
)]) for every n < ω. ♦

6. Transfer of properties

Let B be a class of filters. A topology is B-based if and only if
each neighborhood filter is in B. For each class B, the B-based topologies
form a concretely coreflective subcategory of topologies. For example,
classes of topologies of a given character, or of a given tightness, can
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be represented as those of B-based topologies for appropriate classes B.
Other instnaces of classes of B-based topologies for appropriate classes
of filters B are sequentiality, Fréchetness, strong Fréchetness, productive
Fréchetness, bisequentiality, and others (see, e.g., [4]).

Thms. 5.1 and 5.2 enable us to transfer some such coreflective prop-
erties from Cα(X,R) to Cα(X, $) and vice versa.

If H ⊂ X × Y , then Hx := {y ∈ Y : (x, y) ∈ H}, and if A ⊂ X
then HA :=

⋃

x∈AHx. If now F and H are families of subsets of X and
X × Y respectively, then

HF := {HF : F ∈ F , H ∈ H}
is a family of subsets of Y . If F and H are filters, then, by a handy abuse
of notation, HF stands also for the filter it generates.

Let Fλ denote the class of filters admitting a filter base of cardinality
less than ℵλ. In particular, F0 is the class of principal filters, and F1 is
the class of countably based filters. The class of all filters is denoted by F.

A class B of filters is H-composable if HF ∈ B for each F ∈ B

and every H ∈ H (see [8], [13], [16]). A class B of filters is H-steady if
H ∨ F ∈ B for each F ∈ B and each H ∈ H (see [13], [16]).

If H is a class of filters and γ is a filter subbase, then γ ∈ H means
that the filter generated by γ belongs to H.

By Th. 5.1,

Proposition 6.1. Let B be F0-composable and F1-steady. If X is com-
pletely regular, α is a compact web, and α ∈ B, then Cα(X,R) is B-
based at 0̃. If moreover D is a hereditarily closed compact network, then
CαD

(X,R) is B-based.

Proof. If α ∈ B then Γ−
2 α ∈ B, because B is F0-composable. On

the other hand, Γ−
3 N̄R(0) is a countably based filter, because NR(0) is

countably based. Therefore, Γ−
2 α ∨ Γ−

3 N̄R(0) ∈ B, because B is F1-
steady. Finally, Nα(X,R)(0̃) ∈ B as the image by a map of a filter from B.
Therefore CαD

(X,R) is B-based because CαD
(X,R) is homogeneous by

Th. 4.8. ♦

Proposition 6.2. Let B be F0-composable. If α is a compact web, X is
completely regular, and Cα(X,R) is B-based, then α ∈ B.

Proof. If Cα(X,R) is B-based, Nα(X,R)(0̃) ∈ B, hence by Th. 5.2, α ∈ B,
because B is F0-composable. ♦

Theorem 6.3. Let B be F0-composable and F1-steady, and let D be
a hereditarily closed compact network on a completely regular space X.
Then CαD

(X,R) is B-based if and only if αD ∈ B.
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F. Jordan established in [13, Th. 3] a special case of Th. 6.3 for
α =

{

O(D) : D ∈ [X]<ℵ0
}

, hence concerning Cp(X,R), in terms of γ-

connection (see Rem. 2.3). It is enough to replace in his proofs [X]<ℵ0

by any (additively stable) family D of compact sets, in order that the
proofs remain valid for α = {O(D) : D ∈ D} and CD(X,R).

Since α is a filter subbase of Nα(X,$∗)(X), and α(X, $∗) is homeo-
morphic to α(X, $) by complementation, we have

Corollary 6.4. Let B be F0-composable and F1-steady, and let D be
a hereditarily closed compact network on a completely regular space X.
Then CαD

(X,R) is B-based if and only if NαD(X,$)(∅) ∈ B.

7. Transferable properties

We shall review several F0-composable F1-steady classes of filters,
in other words, transferable local properties. Several results on compos-
ability and steadiness can be found in [13], [16].

We say that a property of topological spaces is local if there is a
class P of filters4 such that a topology has the property whenever each
neighborhood filter belongs to P. Character and tightness are examples
of local properties.

Two families A and B of subsets of a given set mesh (in symbols,
A#B) if A∩B 6= ∅ for each A ∈ A and B ∈ B. The grill A# of a family
A of subsets of X is defined as {H ⊂ X : H#A}, where H#A is an
abbreviation for {H}#A. The character χ(F) of a filter F is the least
cardinal τ such that F has a filter base of cardinality τ . The tightness
t(F) of a filter F is the least cardinal τ for which if A ∈ F# then there
is B ⊂ A of cardinality τ such that B ∈ F#. It was proved in [15] that

Proposition 7.1. (Infinite) character and tightness are F0-composable
and F1-steady.

A filter F is G to E refinable [14] (F ∈ (G/E)≥) if for each filter
G ∈ G with G#F there exists a filter E ∈ E such that E ≥ F ∨G; a filter
F is G to E me-refinable [14] (F ∈ (G/E) #≥) if for each filter G ∈ G
with G#F there exists a filter E ∈ E such that E ≥ F and E#G. The
following two facts were observed in [14] in special cases of countably
based filters.

Lemma 7.2. The property (Fκ/Fλ)≥ is Fµ-steady if µ ≤ κ.

4possibly depending on the topology.
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Proof. Let F ∈ (Fκ/Fλ)≥ , E ∈ Fκ and D ∈ Fµ be such that D#(E ∨F).
Then (D ∨ E)#F and D ∨ E ∈ Fκ, because µ ≤ κ; thus there is G ∈ Fλ

such that G ≥ D ∨ E ∨ F . ♦

Lemma 7.3. The property (Fκ/Fλ)≥ is Fµ-composable if µ ≤ κ ∧ λ.
Proof. If F ∈ (Fκ/Fλ)≥ , E ∈ Fκ and M ∈ Fµ be such that E#(MF).
Then M−E#F and M−E ∈ Fκ provided that µ ≤ κ. As F ∈ (Fκ/Fλ)≥
there is G ∈ Fλ such that G ≥ M−E ∨F . Thus MG ≥ M (M−E ∨ F) ≥
≥ E ∨MF and MG ∈ Fλ provided that µ ≤ λ. ♦

Fréchetness, strong Fréchetness, productive Fréchetness and bise-
quentiality are other examples of local properties that can be expressed in
terms of refinable and me-refinable filters with respect to various classes
(see [15] and a pioneering paper [5]). A filter F is

(1) Fréchet ⇐⇒ F ∈ (F0/F1)≥: A filter F is Fréchet if for each
set A such that A#F there exists a countably based filter E such that
A ∈ E ≥ F .

(2) strongly Fréchet ⇐⇒ F ∈ (F1/F1)≥: A filter F is strongly
Fréchet if for each countably filter G such that G#F there exists a count-
ably based filter E such that E ≥ F ∨ G.

(3) productively Fréchet ⇐⇒ F ∈
(

(F1/F1)≥ /F1

)

≥
: A filter F is

productively Fréchet if for each strongly Fréchet filter G such that G#F
there exists a countably based filter E such that E ≥ F ∨ G.

(4) bisequential ⇐⇒ F ∈ (F/F1)#≥: A filter F is bisequential if for
each filter G such that G#F there exists a countably based filter E such
that E ≥ F and E#G.

Of course, in the first three conditions (but not in the fourth) the
existence of a countably based filter E is equivalent to the existence of a
sequential filter 5 E . All these properties are F0-composable. Not all are
F1-steady.

Proposition 7.4. Classes of strongly Fréchet, productively Fréchet and
bisequential filters are F1-steady; the class of Fréchet filters is not F1-
steady. All the listed properties are F0-composable.

Proof. All the cases are proved in [16] except for bisequential filters. Let
F be bisequential and E ∈ F1. If D is any filter such that D#(E∨F), then
(D ∨ E)#F , hence there is G ∈ F1 such that G ≥ F and G# (D ∨ E).
The filter G ∨ E ∈ F1 and G ∨ E meshes with D and G ∨ E ≥ G ≥ F . Let
F be bisequential and A a relation. If D is a filter such that D#AF ,

5A filter is sequential if it is generated by the queues of a sequence.
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then A−D#F , hence there is H ∈ F1 such that H#A−D and H ≥ F .
Thus AH#D and AH ≥ AF .

If F is Fréchet but not strongly Fréchet, then there is E ∈ F1 such
that G ≥ E ∨ F for no G ∈ F1. Hence E ∨ F is not Fréchet. ♦

8. Dictionary X ←→ OX

Here there is a list of elementary equivalences that will be used to
establish equivalences of more convoluted equivalences between proper-
ties of Cα(X, $∗) and X. We consider only those collections α that are
finitely stable, that is, A0,A1 ∈ α implies that A0 ∩A1 ∈ α.

Let Y ⊂ X. A family B of (open) subsets of X is called an α-cover
of Y if B ∩ A 6= ∅ for every A ∈ α such that Y ∈ A. In particular, if
α =

{

O(D) : D ∈ [X]<ℵ0
}

, then an α-cover is an ω-cover, that is, for
each finite set D there is B ∈ B such that D ⊂ B.

Lemma 8.1. A family B meshes with Nα(X,$∗)(Y ) if and only if B is an
α-cover of Y .

Proof. A family B meshes with Nα(X,$∗)(Y ) if and only if B∩A 6= ∅ for
each A ∈ α such that Y ∈ A. This means exactly that B is an α-cover
of Y . ♦

Let A,B be families of subsets of a given set. We say that A is
coarser than B (equivalently, B is finer than A)

A ≤ B
if for every A ∈ A there is B ∈ B such that B ⊂ A. A collection of
families of subsets of X can be considered as a family of subsets of 2X .
In this sense, we say that a collection is finer (coarser) than another
collection. The following facts are just rewording of definitions, but we
formulate them as lemmas for easy reference.

Lemma 8.2. A collection γ is finer than Nα(X,$∗)(Y ) if and only if for
each A ∈ α such that Y ∈ A there is G ∈ γ such that G ⊂ A.

Lemma 8.3. A collection γ is coarser than Nα(X,$∗)(Y ) if and only if
for each G ∈ γ there is A ∈ α such that Y ∈ A ⊂ G.

In particular, a sequence (Gn)n, that is, a family γ :=
{

{Gn : n ≥
≥ m} : m < ω

}

is finer than Nα(X,$∗)(Y ) if for every A ∈ α with Y ∈ A
there is nA < ω such that Gn ∈ A for each n ≥ nA.
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8.1. Tightness

Recall that (see e.g., [17]) the α-Lindelöf number of a topological
space X is the least cardinal τ such that for each α-cover there exists an
α-subcover of cardinality less than or equal to τ .6

By Lemma 8.1,7

Theorem 8.4. The tightness of Cα(X, $) is equal to the supremum of
the α-Lindelöf numbers of open subsets of X.

Hence, by Cor. 3.2 and Th. 6.3,

Theorem 8.5. If α is a compact web on a completely regular space X,
then Cα(X,R) is τ -tight if and only if the α-Lindelöf number of X is τ .

These facts specialize, in an obvious way, to compact-open topolo-
gies Ck(X,Z), when α = {O(K) : K ∈ K} where K is the family of
compact subsets of X, to Isbell topologies Cκ(X,Z), when α = κ(X) is
the collection of compact families. If α =

{

OX(D) : D ∈ [X]<ℵ0
}

then
Th. 8.5 specializes with τ = ℵ0 to

Proposition 8.6. If X is completely regular, then Cp(X,R) is countably
tight if and only if each open ω-cover of X has a countable ω-subcover of
X.

Recall that a family P is an ω-cover of X if for each finite subset
F of X there is P ∈ P such that F ⊂ P .

The following theorem is due to Arhangel’skii [1] and Pytkeev [19]:

Theorem 8.7. If X is completely regular, then Cp(X,R) is countably
tight if and only if Xn is Lindelöf for every n < ω.

8.2. Character

A subset γ of a collection α (of openly isotone families) is a base of
α if for each A ∈ α there is G ∈ γ such that G ⊂ A. The least cardinality
τ such α has a base of cardinality τ is called the character χ(α) of α.

6More generally, if κ ≤ λ are cardinals, then we say that X is λ/κ[α]-compact if
for every open α-cover of X of cardinality < λ there is an α-subcover of cardinality
< κ of X . In particular, a topological space is [α]-compact if it is λ/ℵ0[α]-compact
for each cardinal λ, countably [α]-compact if it is ℵ1/ℵ0[α]-compact, [α]-Lindelöf if it
is λ/ℵ1[α]-compact for every λ.

7Similar characterizations can be formulated for λ/κ-tightnes with κ ≥ ℵ0. We
say that a filter F is λ/κ-tight if for each H ∈ F# with cardH < λ there is B ⊂ H
such that cardB < κ and B ∈ F#. A topological space is λ/κ-tight if its every
neighborhood filter is λ/κ-tight.
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Because the character of α is a hereditary property, Lemma 8.2
implies that

Theorem 8.8. The character of Cα(X, $) is equal to the character of α.

It follows from Cor. 3.3 and Prop. 6.2 that

Theorem 8.9. If α is a compact web on a completely regular space X,
then the character of Cα(X,R) is equal to the character of α.

Corollary 8.10. If X is T1, then Cp(X, $) is of countable character if
and only if X is countable.

Proof. By Th. 8.8, the character of Cp(X, $) is countable, if and only if
for every open subset Y of X there is a sequence (xn)n ⊂ Y such that
{OX({x1, . . . , xn}) : n < ω} is finer than

{

OX(F ) : F ∈ [X]<ℵ0
}

, that is,
for every finite subset F of Y there is n < ω such that {x1, . . . , xn} ⊂ O
implies F ⊂ O for each open set O. Since X is T1, this means that
F ⊂ {x1, . . . , xn}. ♦

Corollary 8.11. If X is T1, then Ck(X, $) is of countable character if
and only if X is hereditarily hemicompact.

Proof. Let Y be an open subset ofX. The neighborhood filterNK(X,$∗)(Y)
is countably based if and only if there exists a sequence (Kn)n of com-
pact subsets of Y such that for every K ∈ KY there exists n such that
OX(Kn) ⊂ OX(K), which, for a T1-topology, is equivalent K ⊂ Kn. ♦

It is well-known that a (Hausdorff) topological vector space is met-
rizable if and only if it is of countable character. Therefore, we recover
[17, p. 60]

Corollary 8.12. If X is completely regular, then Cp(X,R) is metrizable
if and only if it is of countable character if and only if X is countable.

Corollary 8.13. If X is completely regular, then Ck(X,R) is metrizable
if and only if it is of countable character if and only if X is hemicompact.

8.3. Variants of Fréchetness

Here we characterize some of the properties (H/E)≥ of hyperspaces
in terms of their underlying spaces.

Proposition 8.14. Cα(X, $) is (Fκ/Fλ)≥-based if and only if X enjoys
the following property: For each open subset Y of X, for every collection
γ of α-covers of Y with card (γ) ≤ ℵκ, there exists a collection ζ of
families of open sets with card (ζ) ≤ ℵλ such that for every A ∈ α with
Y ∈ A, and each G ∈ γ there exists Z ∈ ζ such that Z ⊂ A ∩ G.
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As we have observed in preliminary considerations, the property
exhibited in the proposition above is necessarily hereditary for open sets.
The class (F0/F1)≥ is that of Fréchet filters, and (F1/F1)≥ that of strongly
Fréchet filters. In the following corollaries we will use sequence charac-
terizations of these properties: a filter F is Fréchet if for each H ∈ F#

there is a sequence (xn)n ⊂ H that is finer than F ; a filter F is strongly
Fréchet if for each decreasing sequence (Hn)n such that Hn ∈ F# for
each n, there is a sequence (xn)n finer than F and such that xn ∈ Hn for
each n. Prop. 8.14 specializes as follows:

Corollary 8.15. Cα(X, $) is Fréchet at X0 ∈ C(X, $) if and only if for
each family G of open sets such that G∩A 6= ∅ for each XrX0 ∈ A ∈ α,
there exists a sequence (Gn)n ⊂ G such that for each X r X0 ∈ A ∈ α,
there is nA < ω, for which Gn ∈ A for every n ≥ nA.

Corollary 8.16. Cα(X, $) is strongly Fréchet at X0 ∈ C(X, $) if and
only if for each decreasing sequence (Gn)n of families of open sets such
that Gn ∩A 6= ∅ for each XrX0 ∈ A ∈ α, there exists a sequence (Gn)n

with Gn ∈ Gn such that for each X rX0 ∈ A ∈ α, there is nA < ω, for
which Gn ∈ A for every n ≥ nA.

Of course, the sequence (Gn)n fulfills the condition above if and
only if it converges to XrX0 in Cα(X, $∗). In the case of α = αD, where
D = [X]<ℵ0 , it is equivalent to X rX0 ⊂LimnGn :=

⋃

n<ω

⋂

k>nGk (the
set-theoretic lower limit). In particular, for X0 = ∅ the condition above
is the condition (γ) of Gerlits and Nagy [10]: if G is an open ω-cover of
X, then there is a sequence Gn ∈ G with LimnGn = X.

As we have seen in Prop. 7.4, Fréchetness is not F1-steady. Never-
theless, it is known that a Fréchet topological group is strongly Fréchet
(see [18]). Therefore

Theorem 8.17. If D is a compact network on a completely regular space
X, then CαD

(X,R) is Fréchet if and only if it is strongly Fréchet if and
only if for every D-cover P of X there is a sequence (Pn)n ⊂ P such that
for each D ∈ D there is nD < ω such that Pn ∈ A for each n ≥ nD.
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