Mathematica Pannonica 19/2 (2008), 241–260

PROPERTIES TRANSFER BETWEEN TOPOLOGIES ON FUNCTION SPACES, HYPERSPACES AND UNDERLYING SPACES

Szymon Dolecki

Burgundy University, Mathematical Institute of Burgundy, CNRS UMR 5584, B.P. 47870, 21078 Dijon, France

Received: October 2007

MSC 2000: 54 C 20, 54 C 30, 54 C 35

Keywords: Function spaces, hyperspaces, polar topologies, dual topologies.

Abstract: Each collection α of families of subsets of X determines a topology $\alpha(X, Z)$ on the space of continuous maps C(X, Z). Interrelations between local properties of $\alpha(X, \mathbb{R})$ and of $\alpha(X, \$)$ (on the hyperspace C(X, \$)), and with properties of a topological space X are studied in a general framework, which allows to treat simultaneously several classical constructions, like pointwise convergence, compact-open topology and the Isbell topology.

1. Introduction

The interrelation of properties of $C_{\alpha}(X, Z)$ with those of X and Z, is a fascinating theme. Here α is a collection of (openly isotone¹) families of subsets of X, that defines a topology $\alpha(X, Z)$ on C(X, Z) by a subbase (1.1) $\{[\mathcal{A}, O] : \mathcal{A} \in \alpha, O \in \mathcal{O}_Z\}$, where $[\mathcal{A}, O] := \{f : f^-(O) \in \mathcal{A}\}, f^-(O) := \{x : f(x) \in O\}$, and \mathcal{O}_Z is the set of open subsets of Z.

E-mail address: dolecki@u-bourgogne.fr

¹A family \mathcal{A} of open sets is *openly isotone* if $B \in \mathcal{A}$ provided that B is open and there is an element $A \in \mathcal{A}$ such that $A \subset B$.

Its very special case, that of $C_p(X, \mathbb{R})$ (the space of real-valued functions with pointwise convergence) has attracted a lot of researchers, among whom A. V. Arhangel'skii (e.g., [2]). Its intermediate case of (1.2) $\alpha = \alpha_{\mathcal{D}} := \{\mathcal{O}_X(D) : D \in \mathcal{D}\},\$ where \mathcal{D} is a family of subsets of X, and $\mathcal{O}_X(D) := \{O \in \mathcal{O}_X : D \subset O\},\$ is the object of a book of McCoy and Ntantu [17].

Actually the said interrelation corresponds to the upper side of a quadrilateral

$$\begin{array}{cccc} X & \leftrightarrow & C_{\alpha}(X, \mathbb{R}) \\ \uparrow & & \uparrow \\ C_{\alpha}(X, \$^*) & \leftrightarrow & C_{\alpha}(X, \$) \end{array}$$

in which, of course, one can consider also other sides, as well as diagonals. Here , * stand for the two homeomorphic variants of the Sierpiński topology on $\{0, 1\}$, so that C(X,\$) can be identified with the hyperspace of X, and C(X,*) with the set O_X of open subsets of X.

It turns out that it is fruitful to study the three other sides in order to better grasp the interrelation of the upper side $X \leftrightarrow C_{\alpha}(X, \mathbb{R})$. Indeed,

(1) $C_{\alpha}(X, \$)$ is homeomorphic to $C_{\alpha}(X, \$^*)$;

(

(2) One can establish a dictionary of easy translations of elementary properties of $C_{\alpha}(X, \$^*)$ and α -properties of X;

(3) Under a separation condition (by real functions) one can evidence an intimate relationship between $C_{\alpha}(X, \mathbb{R})$ and $C_{\alpha}(X, \$)$.

More precisely, if X is completely regular and α is a compact web, then the neighborhood filter for $\alpha(X, \mathbb{R})$ of the zero function $\tilde{0}$ (that is, $\tilde{0}(x) = 0$ for each $x \in X$) belongs to the same *transferable* class as the neighborhood filter of \emptyset for $\alpha(X, \$)$. Roughly speaking a web α on X is a collection of families of open subsets of X such that for each open subset Y there is $\mathcal{A} \in \alpha$ that can be reconstructed from its trace on Y. A web is *compact* if its every element \mathcal{A} is a *compact family*.²

Compact (openly isotone) families on a topological space X coincide with the open sets of the *Scott topology* of $C(X, \$^*)$ (see, e.g. [11]). It was shown in [6] that each such a family is of the form $\bigcup_{K \in \mathcal{D}} \mathcal{O}_X(K)$, where \mathcal{D} is a subfamily of compact subsets of X, if and only if X is *consonant*.

A collection $\alpha_{\mathcal{D}}$ of the type (1.2), where \mathcal{D} is a network consisting of compact subsets of X, is a compact web. Moreover, if \mathcal{D} is hereditarily

²Precise definitions are given before Lemma 4.7.

closed in a completely regular space X, then $C_{\alpha_{\mathcal{D}}}(X,\mathbb{R})$ is, in particular, a topological group (e.g., [17, Th. 1.1.7]), hence homogeneous. Therefore in order to prove a local (transferable) property of $C_{\alpha_{\mathcal{D}}}(X,\mathbb{R})$, it is enough to establish it for the neighborhood filter of the constant function $\tilde{0}$.

Of course, in general, a hyperspace topology $\alpha(X, \$)$ is not homogeneous. As $\alpha(X, \$)$ and $\alpha(X, \$^*)$ are homeomorphic (by complementation), a property of $\mathcal{N}_{\alpha(X,\$)}(A)$ for $A \in C(X,\$)$ is also a property of $\mathcal{N}_{\alpha(X,\$^*)}(X \setminus A)$ and, as a rule, can be characterized in terms of the space $X \setminus A$ with the induced topology. Therefore a local property of $C_{\alpha}(X,\$)$ can be characterized by a hereditary (with respect to open subsets) property of X.

For general compact webs α on completely regular spaces, $C_{\alpha}(X, \mathbb{R})$ need not be even translation invariant. Therefore, that $C_{\alpha}(X, \mathbb{S})$ has a local transferable property does not necessarily imply that $C_{\alpha}(X, \mathbb{R})$ has the same property. The implication holds for completely regular consonant spaces, because then α is of the form (1.2).

Nevertheless, some local properties of hyperspaces pass onto the corresponding function spaces thanks to a characterization of convergence of functions valued in topological spaces in terms of the corresponding hyperspace convergence of the preimages of closed sets. Consequently, each α -topology on $C(X, \mathbb{R})$ can be, in principle, characterized in terms of the corresponding α -topology on the hyperspace C(X, \$), actually on its subset consisting of functionally closed subsets of X. By the way, it is why Georgiou, Iliadis and Papadopoulos studied properties of real-valued function spaces in terms of topologies on functionally open sets [9].

The present paper restricts its scope to topologies on function spaces (almost always real-valued) and to the corresponding hyperspace topologies. This is just one aspect of a general theory of convergence function spaces and hyperspace convergences that will be discussed in [7].

2. Open-set topologies

We denote the set of open subsets of X by either $C(X, \$^*)$ or \mathcal{O}_X . We use the latter convention to define $\mathcal{O}_X(x) := \{O \in \mathcal{O}_X : x \in O\}$, and by $\mathcal{O}_X(A) := \{O \in \mathcal{O}_X : A \subset O\}$. If now \mathcal{A} is a family of subsets of X, then $\mathcal{O}_X(\mathcal{A}) := \bigcup_{A \in \mathcal{A}} \mathcal{O}_X(A)$. A family \mathcal{A} of subsets of X is openly isotone if $\mathcal{O}_X(\mathcal{A}) = \mathcal{A}$.

If α is a non-empty collection of openly isotone families of subsets of

X, then (1.1) is a subbase of a topology on C(X, Z), denoted by $\alpha(X, Z)$. The corresponding topological space is denoted by $C_{\alpha}(X, Z)$.

In particular, for a non-empty family \mathcal{D} of subsets of X, the collection $\alpha := \alpha_{\mathcal{D}}$ is defined by

(2.1) $\alpha_{\mathcal{D}} := \{\mathcal{O}_X(D) : D \in \mathcal{D}\},\$

and the symbol $C_{\alpha_{\mathcal{D}}}(X, Z)$ is abridged to $C_{\mathcal{D}}(X, Z)$. It is often required (e.g., [17]) that \mathcal{D} be a (closed) *network* on X, that is, a family of closed sets such that for each $x \in X$ and $O \in \mathcal{O}_X(x)$ there is $D \in \mathcal{D}$ for which $x \in D \subset O$. However (1.1) is a topology subbase for each $\alpha = \alpha_{\mathcal{D}}$ provided that $\mathcal{D} \neq \emptyset$.

If $A \subset X$ and $B \subset Z$ then $[A, B] := \{f \in C(X, Z) : f(A) \subset B\}$. Therefore, $[\mathcal{O}_X(D), O] = [D, O]$ and thus

 $\left\{ [\mathcal{A}, O] : \mathcal{A} \in \alpha_{\mathcal{D}}, O \in \mathcal{O}_Z \right\} = \left\{ [D, O] : D \in \mathcal{D}, O \in \mathcal{O}_Z \right\}.$

Example 2.1. If $\mathcal{D} = [X]^{<\aleph_0}$, then

 $\left\{ [F, O] : F \in [X]^{<\aleph_0}, O \in \mathcal{O}_Z \right\}$

is a base of the topological space $C_p(X, Z)$ of pointwise convergence (here p abridges $[X]^{<\aleph_0}$).

Example 2.2. If $\mathcal{D} = \mathcal{K}_X$ (the family of compact subsets of X), then $\{[K, O] : K \in \mathcal{K}_X, O \in \mathcal{O}_Z\}$

is a base of the topological space $C_k(X, Z)$ of compact-open topology (here k abridges \mathcal{K}_X).

We consider two complementary topologies on, respectively, the hyperspace C(X, \$) and the set $C(X, \$^*)$ of open subsets of X. Here \$ and $\* are two homeomorphic avatars of the *Sierpiński topology* on $\{0, 1\}$:

 $:= \{ \emptyset, \{1\}, \{0, 1\} \}$ and $:= \{ \emptyset, \{0\}, \{0, 1\} \}$.

The *indicator function* ψ_A of a subset A of X is defined by to be 0 on A and 1 out of A. If X is a topological space, then $\psi_A \in C(X, \$)$ if and only if A is closed, and $\psi_A \in C(X, \$^*) := \mathcal{O}_X$ if and only if A is open. The *complementation* ${}^c : 2^X \to 2^X$ associates $A^c := X \setminus A$ with

The complementation $^{c}: 2^{X} \to 2^{X}$ associates $A^{c}:= X \setminus A$ with $A \subset X$. In order to avoid ambiguity, we denote the image of $\mathcal{A} \subset 2^{X}$ by the complementation by

$$\mathcal{A}_c := \left\{ A^c : A \in \mathcal{A} \right\}.$$

The topology $\alpha(X, \$^*)$ on the set $C(X, \$^*)$ (of all open subsets of X) has α for a subbase, because, due to our convention, the subbase consists

of $\{[\mathcal{A}, \{0\}] : \mathcal{A} \in \alpha\}$, and $[\mathcal{A}, \{0\}] = \{\psi_B \in C(X, \$^*) : \psi_B^-(0) \in \mathcal{A}\}$ (by definition, $\psi_B^-(0) = B$).

If α is stable for finite intersections, then α is a base of $\alpha(X, \$^*)$. Hence the *neighborhood filter* $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ of $Y \in C(X,\$^*)$ is generated by $\{\mathcal{A} \in \alpha : Y \in \mathcal{A}\}.$

In particular, for $\alpha = \alpha_{\mathcal{D}}$ a subbase for open sets is of the form $\{\mathcal{O}_X(D) : D \in \mathcal{D}\},\$

and $\alpha_{\mathcal{D}}$ is stable for finite intersections provided that \mathcal{D} is stable for finite unions, so that

$$\mathcal{N}_{\alpha_{\mathcal{D}}(X,\$^*)}(Y) \approx \{\mathcal{O}_X(D) : Y \supset D \in \mathcal{D}\}$$

The homeomorphic image of $\alpha(X, \$^*)$ by the complementation is a topology on the hyperspace C(X, \$) denoted by $\alpha(X, \$)$. Accordingly, $\{\mathcal{A}_c : \mathcal{A} \in \alpha\}$ is a subbase of $\alpha(X, \$)$ -open sets on the hyperspace C(X, \$); the neighborhood of $H \in C(X, \$)$ with respect to $\alpha(X, \$)$ is

$$\mathcal{N}_{\alpha(X,\$)}(H) \approx \{\mathcal{A}_c : H^c \in \mathcal{A} \in \alpha\}.$$

In particular, a base of $\mathcal{N}_{\alpha_{\mathcal{D}}(X,\$)}(A_0)$ consists of

 $\{\{A \in C(X, \$) : A \cap D = \varnothing\} : D \in \mathcal{D}, \ A_0 \cap D = \varnothing\}$

This form of basic neighborhoods is at the origin of the term \mathcal{D} -miss topology.

Remark 2.3. Gruenhage introduced the so-called γ -connection [12]. In particular, a filter $\Gamma(Y, X)$, where Y is an open subset of X, is generated by

$$\{\mathcal{O}_X(F): Y \supset F \in [X]^{<\aleph_0}\},\$$

hence $\Gamma(Y, X)$ is a neighborhood filter of Y with respect to $\alpha_{[X]^{<\aleph_0}} := \{\mathcal{O}_X(F) : F \in [X]^{<\aleph_0}\}.$

3. Preimage-wise characterization

Denote by $f^-(A) := \{x : f(x) \in A\}$ and by $\mathcal{F}^-(A)$ a filter generated by

$$\left\{ \left\{ f^{-}(A) : f \in F \right\} : F \in \mathcal{F} \right\}$$

What follows is a special case of a theorem (see [7]) about $C_{\alpha}(X, T)$ and $C_{\alpha}(X, \$)$, where X is a convergence space and T is a topological space. **Theorem 3.1.** Let α be a collection of openly isotone families on a

topological space X. Let C be a base of closed subsets of \mathbb{R} . If \mathcal{F} is a filter on $C(X, \mathbb{R})$, then

$$f \in \lim_{\alpha(X,\mathbb{R})} \mathcal{F} \iff f^{-}(C) \in \lim_{\alpha(X,\$)} \mathcal{F}^{-}(C)$$

for each C.

Proof. By definition, $f_0 \in \lim_{\alpha(X,\mathbb{R})} \mathcal{F}$ if and only if for each open subset O of \mathbb{R} and every $\mathcal{A} \in \alpha$ such that $f_0 \in [\mathcal{A}, O]$, there exists $F \in \mathcal{F}$ such that $f \in [\mathcal{A}, O]$ for each $f \in F$. In other words, if $f_0^-(O) \in \mathcal{A}$, then there exists $F \in \mathcal{F}$ such that $f^-(O) \in \mathcal{A}$ for each $f \in F$, that is, $\mathcal{F}^-(O)$ converges to $f_0^-(O)$ in $\alpha(X, \$^*)$, equivalently, $f_0^-(O^c)$ converges to $f_0^-(O^c)$ in $\alpha(X, \$)$.

Suppose that $f_0^-(C) \in \lim_{\alpha(X,\$)} \mathcal{F}^-(C)$ for each element C of a base of closed subsets of \mathbb{R} . Let A be a closed subset of \mathbb{R} and $\mathcal{C}_A \subset \mathcal{C}$ be such that $A = \bigcap_{C \in \mathcal{C}_A} C$. If $x \notin f_0^-(A)$ then there is $C \in \mathcal{C}_A$ such that $x \notin f_0^-(C)$, hence, by assumption, there exists $F \in \mathcal{F}$ such that $x \notin f^-(C)$, and thus $x \notin f^-(A)$ for every $f \in F$, that is, $f_0^-(A) \in$ $\in \lim_{\alpha(X,\$)} \mathcal{F}^-(A)$. \diamond

Corollary 3.2. The (infinite) tightness of $\alpha(X, \mathbb{R})$ is not greater than that of $\alpha(X, \$)$.

Proof. Suppose that the tightness of $\alpha(X, \$)$ be λ and let \mathcal{C} be a countable base of closed subsets of \mathbb{R} . If $f_0 \in cl_{\alpha(X,\mathbb{R})}\mathcal{B}$, then by Th. 3.1, $f_0^-(C) \in cl_{\alpha(X,\$)} \{f^-(C) : f \in \mathcal{B}\}$ for each $C \in \mathcal{C}$. Hence for each $C \in \mathcal{C}$ there is $\mathcal{B}_C \subset \mathcal{B}$ with card $(\mathcal{B}_C) \leq \lambda$ such that

 $f_0^-(C) \in \operatorname{cl}_{\alpha(X,\$)} \left\{ f^-(C) : f \in \mathcal{B}_C \right\}, \text{ thus } f_0^-(C) \in \operatorname{cl}_{\alpha(X,\$)} \left\{ f^-(C) : f \in \mathcal{B}_0 \right\},$ where $\mathcal{B}_0 := \bigcup_{C \in \mathcal{C}} \mathcal{B}_C$. Th. 3.1 implies that $f_0 \in \operatorname{cl}_{\alpha(X,\mathbb{R})} \mathcal{B}_0$ and $\operatorname{card}(\mathcal{B}_0) \leq \lambda$. \diamond

Corollary 3.3. The (infinite) character of $\alpha(X, \mathbb{R})$ is not greater than that of $\alpha(X, \$)$.

Proof. Suppose that the character of $\alpha(X, \$)$ be λ and let \mathcal{C} be a countable base of closed subsets of \mathbb{R} . Then $f \in \lim_{\alpha(X,\mathbb{R})} \mathcal{F}$ if and only if $f^-(C) \in \lim_{\alpha(X,\$)} \mathcal{F}^-(C)$ for each element $C \in \mathcal{C}$. By the assumption, for each $C \in \mathcal{C}$ there is a filter $\mathcal{E}_C \leq \mathcal{F}^-(C)$ of character not greater than λ and such that $f^-(C) \in \lim_{\alpha(X,\$)} \mathcal{E}_C$. Let $\mathcal{F}_C \subset \mathcal{F}$ be a filter on $C(X,\mathbb{R})$ such that $F \in \mathcal{F}_C$ whenever there is $E \in \mathcal{E}_C$ for which $E \subset F^-(C)$. Let \mathcal{C} be ranged in a sequence $\{C_n : n < \omega\}$. Then there is a sequence $(\mathcal{F}_{C_n})_n$ such that $\mathcal{F}_{C_n} \subset \mathcal{F}_{C_{n+1}} \subset \mathcal{F}$ and $f^-(C_n) \in \lim_{\alpha(X,\$)} \mathcal{F}^-_{C_k}(C_n)$ for each $k \leq n$. Consequently $(\bigcup_{k < \omega} \mathcal{F}_{C_k})^-(C_n)$ converges to $f^-(C_n)$ in $\alpha(X,\$)$ for each $n < \omega$, and the character of $\bigcup_{k < \omega} \mathcal{F}_{C_k}$ is not greater than λ . By Th. 3.1, $f \in \lim_{\alpha(X,\mathbb{R})} \bigcup_{k < \omega} \mathcal{F}_{C_k}$.

As we have seen, no assumptions on X or α were needed to get the corollaries above. The converse inequality will be established in the case of compact webs in completely regular spaces.

4. Compact families

An openly isotone family \mathcal{A} is *compact* if each family \mathcal{P} of open sets such that $\bigcup \mathcal{P} \in \mathcal{A}$ has a finite subfamily \mathcal{P}_0 of \mathcal{P} such that $\bigcup \mathcal{P}_0 \in \mathcal{A}$. We denote by $\kappa(X)$ the collection of all compact families on X. Here are fundamental examples:

$$K \text{ compact } \Rightarrow \mathcal{O}_X(K) \in \kappa(X);$$

 $x \in \lim_X \mathcal{F} \Rightarrow \mathcal{O}_X(\mathcal{F} \land \{x\}) \in \kappa(X),$

where $\mathcal{F} \land \{x\} := \{\{F \cup \{x\}\} : F \in \mathcal{F}\}.$

The collection of (openly isotone) compact families fulfill the following properties:

$$\emptyset, \mathcal{O}_X \in \kappa(X);$$
$$\alpha \subset \kappa(X) \Rightarrow \bigcup_{\mathcal{A} \in \alpha} \mathcal{A} \in \kappa(X);$$
$$\mathcal{A}_0, \mathcal{A}_1 \in \kappa(X) \Rightarrow \mathcal{A}_0 \cap \mathcal{A}_1 \in \kappa(X)$$

Therefore

Corollary 4.1. $\kappa(X)$ is the collection of open sets of a topology on $\mathcal{O}_X = C(X, \$^*)$.

The topology of Cor. 4.1 is called the *Scott topology* (see [11], [3]). **Example 4.2.** If $\kappa = \kappa(X)$ is the collection of (openly isotone) compact families on X, then

 $\{[\mathcal{A}, O] : \mathcal{A} \in \kappa(X), O \in \mathcal{O}_Z\}$

is a subbase of the *Isbell topology* on C(X, Z). In particular, $\kappa(X)$ is the collection of open sets of $C_{\kappa}(X, \mathbb{S}^*)$.

Lemma 4.3. If $\mathcal{A} = \mathcal{O}(\mathcal{A})$ is a compact family of subsets of a completely regular topological space X, and F is a closed subset of X with $F^c \in \mathcal{A}$, then there is $A \in \mathcal{A}$ and $h \in C(X, [0, 1])$ such that $h(A) = \{0\}$ and $h(F) = \{1\}$.

Proof. By complete regularity, for every $x \notin F$, there is an open neighborhood O_x of x and $f_x \in C(X, [0, 1])$ such that $f_x(O_x) = \{0\}$ and $f_x(F) = \{1\}$. Therefore $F^c = \bigcup_{x \notin F} O_x \in \mathcal{A}$, so that by the compactness

of \mathcal{A} there is $n < \omega$ and $x_1, \ldots, x_n \notin F$ such that $A = \bigcup_{1 \le i \le n} O_{x_i} \in \mathcal{A}$. The continuous function $\min_{1 \le i \le n} f_{x_i}$ is 0 on A and 1 on F.

If \mathcal{A} is an openly isotone family on X and C is a subset of X, then $\mathcal{A} \lor C := \mathcal{O}_X (\{A \cap C : A \in \mathcal{A}\}).$

Lemma 4.4. If \mathcal{A} is a compact openly isotone family on X and C is a closed subset of X, then $\mathcal{A} \lor C$ is compact.

Proof. Indeed, if \mathcal{P} is a family of open sets such that $\bigcup \mathcal{P} \in \mathcal{O}(\{A \cap C : A \in \mathcal{A}\})$, then $\bigcup \mathcal{P} \cup (X \setminus C) \in \mathcal{A}$, hence there exists a finite subfamily \mathcal{P}_0 of \mathcal{P} such that $\bigcup \mathcal{P}_0 \cup (X \setminus C) \in \mathcal{A}$, thus $\bigcup \mathcal{P}_0 \in \mathcal{O}(\{A \cap C : A \in \mathcal{A}\})$. \diamond

The concept of *network* is well-known. Here we introduce a notion of web that extends and weakens that of network. A collection α of openly isotone families is a *web* in X if for every $x \in X$ and each $O \in$ $\in \mathcal{O}_X(x)$ there is $\mathcal{A} \in \alpha$ such that \mathcal{A} is generated by a filter on O. In particular, $\alpha_{\mathcal{D}}$ (2.1) is a web if for each $x \in X$ and every $O \in \mathcal{O}_X(x)$ there is $D \in \mathcal{D}$ such that $D \subset O$. This is a weaker property than that of \mathcal{D} being a network. A collection of openly isotone families is called a *compact web* if it is a web consisting of compact families.

Proposition 4.5. If \mathcal{D} is a compact network, then $\alpha_{\mathcal{D}}$ is a compact web.

Indeed, in this case, $\alpha_{\mathcal{D}}$ is a collection of compact families. It is a web, because it includes $\{\mathcal{O}_X(\{x\}) : x \in X\}$. For instance, $\{\mathcal{O}_X(F) : F \in [X]^{<\aleph_0}\}$ and $\{\mathcal{O}_X(K) : K \in \mathcal{K}(X)\}$ are compact webs. Therefore, **Corollary 4.6.** $\kappa(X)$ is a compact web on X.

In fact, $\kappa(X)$ is a web, because it includes a web, for example, $\{\mathcal{O}_X(K) : K \in \mathcal{K}(X)\}$. The following result extends [17, Th. 1.1.5]. **Lemma 4.7.** If Z is Hausdorff and α is a web, then $C_{\alpha}(X, Z)$ is Hausdorff.

Proof. If $f_0 \neq f_1$ then there is $x \in X$ such that $f_0(x) \neq f_1(x)$, and because Z is Hausdorff, there exist disjoint open sets O_0 and O_1 such that $f_0(x) \in O_0$ and $f_1(x) \in O_1$. Therefore $W := f_0^-(O_0) \cap f_1^-(O_1) \in \mathcal{O}_X(x)$, and since α is a web, there exists $\mathcal{A} \in \alpha$ such that \mathcal{A} is generated by a filter on W. Therefore $f_0 \in [\mathcal{A}, O_0], f_1 \in [\mathcal{A}, O_1]$ and $[\mathcal{A}, O_1] \cap [\mathcal{A}, O_0]$ is empty, for if $f \in [\mathcal{A}, O_1] \cap [\mathcal{A}, O_0]$ then there exist $W \supset A_0, A_1 \in \mathcal{A}$ such that $A_0 \subset f^-(O_0), A_1 \subset f^-(O_1)$ and $A := A_0 \cap A_1 \in \mathcal{A}$, hence $f(A) \subset O_0 \cap O_1 = \emptyset$. \diamond

A family \mathcal{D} of closed subsets of X is called *hereditarily closed* pro-

vided that $F \subset D \in \mathcal{D}$ and F is closed implies that $F \in \mathcal{D}$.³ It is proved in [17, Th. 1.1.7] that

Theorem 4.8. If \mathcal{D} is a hereditarily closed compact network and Z is a topological group, then $C_{\mathcal{D}}(X, Z)$ is a topological group.

In particular, the topology $\alpha_{\mathcal{D}}$ of Th. 4.8 is homogeneous. Of course, families of all closed compact subsets and of all finite subsets of T_1 topologies are hereditarily closed compact networks, so that, in particular, $C_p(X, \mathbb{R})$ and $C_k(X, \mathbb{R})$ are topological groups, in fact, topological vector spaces.

Nevertheless, there exists a topological space X (satisfying high separation axioms) and a collection α of compact families including all families generated by compact sets, for which $C_{\alpha}(X, \mathbb{R})$ is not a translation invariant. Of course, such a space X must be *dissonant*.

Example 4.9. Consider the Arens topology on $X := \{x_{\infty}\} \cup \bigcup_{n < \omega} X_n$ where $X_n := \{x_{n,k} : k < \omega\}$: each $x \neq x_{\infty}$ is isolated, and $O \in \mathcal{O}_X(x_{\infty})$ whenever there is n_O and a map $h : \omega \to \omega$ such that

 $\{x_{\infty}\} \cup \{x_{n,k} : n \ge n_O, k \ge h(n)\} \subset O.$

The Arens topology is a prime topology, that is, all the elements but possibly one are isolated. Each prime topology has strong separation properties, in particular, is zero-dimensional and paracompact. Every compact subset of the Arens space is finite. A compact family S is simple if either $S = \mathcal{O}_X(F)$ where F is a compact (hence, finite) subset of X, or $S \subset \mathcal{O}_X(x_\infty)$. Every compact family on the Arens space is a union of simple families. It is known [6] that the Arens topology is dissonant, in other words, there exists a compact family S that is not of the form $\mathcal{O}_X(F)$ with compact set F, hence $S \subsetneq \mathcal{O}_X(x_\infty)$.

Let $\mathcal{D} \subset \mathcal{O}_X(x_{\infty})$ be the compact family such that $D \cap X_n \neq \emptyset$ for each $n < \omega$ and every $D \in \mathcal{D}$, and let $\alpha := \{\mathcal{D}\} \cup \{\mathcal{O}_X(F) : F \in [X]^{<\aleph_0}\}$. Then $C_{\alpha}(X, \mathbb{R})$ is not translation invariant.

Indeed, let $D_0 \in \mathcal{D}$ be such that $X_n \smallsetminus D_0 \neq \emptyset$ for each $n < \omega$. Define $f(D_0) = \{0\}$ and $f(X \smallsetminus D_0) = \{1\}$. Then the translation $g \mapsto f + g$ is not continuous at $\tilde{0}$. Indeed, $f + \tilde{0} \in [\mathcal{D}, B(0, \varepsilon)]$ where $\varepsilon = \frac{1}{2}$. Take any finite set F and $0 < \delta < \varepsilon$, and consider a neighborhood $W_{\delta} := [\mathcal{D}, B(0, \delta)] \cap [\mathcal{O}_X(F), B(0, \delta)]$

of the zero function 0. Then there is $n_F < \omega$ such that $X_{n_F} \cap F = \emptyset$. Let $D_1 \in \mathcal{D}$ be such that $X_{n_F} \cap D_1 \cap D_0 = \emptyset$. On the other hand, $X_{n_F} \cap D_0 \neq \emptyset$ and $X_{n_F} \cap D_1 \neq \emptyset$ by the definition of \mathcal{D} . Set $g(D_1 \cup F) = \{0\}$

³By analogy to *openly isotone* one could call this property *closedly antitone*.

and g(x) = 1 elsewhere, so that $g \in W_{\delta}$ for each $\delta > 0$. Notice that $f(x) + g(x) \in \{1, 2\}$ for each $x \in X_{n_F}$, and since $X_{n_F} \cap D \neq \emptyset$ for every $D \in \mathcal{D}, (f+g)(D) \cap \{1, 2\} \neq \emptyset$ and thus $(f+g) \notin [\mathcal{D}, B(0, \varepsilon)].$

5. Polar topologies

Recall that if $\Omega \subset V \times W$, then the Ω -polar Ω^*A of a subset A of V is the greatest subset B of W such that $A \times B \subset \Omega$. Dual topologies can be represented in terms of polarity.

For every open subset O of \mathbb{R} we define a relation $\Omega_O := \{(x, f) : : f(x) \in O\}$. Accordingly, for each $A \in C(X, \$^*)$, the set [A, O] is the Ω_O -polar of A. Indeed,

(5.1) $[A, O] = \{f : A \subset f^{-}(O)\} = \Omega_{O}^{*}A.$ On the other hand, Ω_{O}^{*} is a relation on $C(X, \mathbb{S}^{*}) \times C(X, \mathbb{R})$, namely $\Omega_{O}^{*} = \{(A, f) : A \subset f^{-}(O)\},$

so that if \mathcal{A} is a subset of $C(X, \$^*)$, then $\Omega_O^* \mathcal{A} = \bigcup_{A \in \mathcal{A}} [A, O] = [\mathcal{A}, O]$. Hence for a filter (base) α on $C(X, \$^*)$, our convention yields $\Omega_O^* \alpha \approx \{[\mathcal{A}, O] : \mathcal{A} \in \alpha\}.$

Finally

$$\mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0}) \approx \bigvee_{O \in \mathcal{N}_{\mathbb{R}}(0)} \Omega_{O}^{*} \alpha \approx \{ [\mathcal{A}, O] : \mathcal{A} \in \alpha, O \in \mathcal{N}_{\mathbb{R}}(0) \}.$$

In case of homogeneity, it is enough to establish a property of $\mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0})$ in order to prove that property for every neighborhood filter of $C_{\alpha}(X,\mathbb{R})$ (for $\alpha = \alpha_{\mathcal{D}}$ with a compact network \mathcal{D} on a completely regular space X).

On the other hand, it follows from Th. 3.1 that the function $\tilde{0} \in \lim_{\alpha(X,\mathbb{R})} \mathcal{F}$ implies, in particular, $\tilde{0}^{-}(C) \in \lim_{\alpha(X,\mathbb{S})} \mathcal{F}^{-}(C)$ for each closed subset C of \mathbb{R} . If $0 \in C$ then $\tilde{0}^{-}(C) = X$, hence $\tilde{0}^{-}(C) \in \lim_{\alpha(X,\mathbb{S})} \mathcal{F}^{-}(C)$ for every \mathcal{F} . Hence the only case to consider is that of $0 \notin C$ that is equivalent to $\tilde{0}^{-}(C) = \emptyset$.

This observation implies that properties of $\mathcal{N}_{\alpha(X,\$)}(\varnothing)$ are intimately related to properties of $\mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0})$, hence to local properties of $C_{\alpha}(X,\mathbb{R})$, thanks to homogeneity (for $\alpha = \alpha_{\mathcal{D}}$ with a compact network \mathcal{D} on a completely regular space X). As $\alpha(X,\$)$ and $\alpha(X,\$^*)$ are homeomorphic by complementation, the properties of $\mathcal{N}_{\alpha(X,\$)}(\varnothing)$ and $\mathcal{N}_{\alpha(X,\$^*)}(X)$ are the same. On the other hand, $\mathcal{N}_{\alpha(X,\$^*)}(X)$ has a filter subbase α .

If $\Gamma \subset X_1 \times \ldots \times X_m$ is a relation, then for $1 \leq k \leq m$, let $\Gamma_k :$: $\Gamma \to X_k$ be the restriction to Γ of the k-th projection of $X_1 \times \ldots \times X_m$.

Consider the fundamental relation $\Gamma \subset C(X, \mathbb{R}) \times C(X, \$^*) \times C(\mathbb{R}, \$^*)$ defined by

$$\Gamma := \{ (f, A, O) : f \in [A, O] \}.$$

The last component of Γ is valued in (open) subsets of \mathbb{R} , and not in \mathbb{R} , because Γ results from a polarity. Therefore, we need to define a filter on $\mathcal{O}_{\mathbb{R}}(0)$ such that its projection on \mathbb{R} coincides with $\mathcal{N}_{\mathbb{R}}(0)$. A base for such a filter (denoted by $\overline{\mathcal{N}}_{\mathbb{R}}(0)$) is given by $\{P \in \mathcal{O}_{\mathbb{R}}(0) : P \subset O\}$ with $O \in \mathcal{O}_{\mathbb{R}}(0)$.

Theorem 5.1. $\mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0}) \approx \Gamma_1(\Gamma_2^- \alpha \vee \Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0)).$ **Proof.** By definition, $\Gamma_2^- \mathcal{A} = \{(f, A, O) : f \in [A, O], A \in \mathcal{A}\}, \text{ and } \Gamma_3^- O = \{(f, A, O) : f \in [A, O]\}, \text{ hence } \Gamma_1(\Gamma_2^- \mathcal{A} \vee \Gamma_3^- O) = [\mathcal{A}, O], \text{ so that } \mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0}) = \Gamma_1(\Gamma_2^- \alpha \vee \Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0)).$

Let Δ be the following subset of $C(X, \$^*) \times C(X, \$^*)$:

 $\Delta := \left\{ (A,G) : \exists_{\theta \in C(X,[0,1])} \ \theta(A) = \{0\}, \theta(X \setminus G) = \{1\} \right\}.$

Let $\Theta : \Delta \to C(X, [0, 1])$ be such that

 $\Theta(A, G)(A) = \{0\}$ and $\Theta(A, G)(X \setminus G) = \{1\}$.

Denote by Δ_2 the projection of Δ on the second component.

Theorem 5.2. If α is a compact web, and X is completely regular, then $\alpha \approx \Delta_2(\Theta^- \mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0})).$

Proof. If $G \in \Delta_2(\Theta^-[\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})])$ then there is an open subset D of X such that $\Theta(D, G) \in [\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})]$, that is, there $A \in \mathcal{A}$ such that $\Theta(D, G)(A) \subset (-\frac{1}{n}, \frac{1}{n})$ hence $A \subset G$, and thus $G \in \mathcal{A}$. It follows that $\Delta_2(\Theta^-[\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})]) \subset \mathcal{A}$ for each $n < \omega$.

Conversely, if $G \in \mathcal{A}$ then, by Lemma 4.3, there is $A \in \mathcal{A}$ such that $(A,G) \in \Delta$, thus $\Theta(A,G)(A) = \{0\}, \Theta(A,G)(X \setminus G) = \{1\}$. Hence $\Theta(A,G) \in [\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})]$ for every $n < \omega$. In other words, $(A,G) \in \Theta^{-}[\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})]$ and so $G \in \Delta_{2}(\Theta^{-}[\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})])$, showing that $\mathcal{A} \subset \subset \Delta_{2}(\Theta^{-}[\mathcal{A}, (-\frac{1}{n}, \frac{1}{n})])$ for every $n < \omega$.

6. Transfer of properties

Let \mathbb{B} be a class of filters. A topology is \mathbb{B} -based if and only if each neighborhood filter is in \mathbb{B} . For each class \mathbb{B} , the \mathbb{B} -based topologies form a concretely coreflective subcategory of topologies. For example, classes of topologies of a given character, or of a given tightness, can

be represented as those of \mathbb{B} -based topologies for appropriate classes \mathbb{B} . Other instnaces of classes of \mathbb{B} -based topologies for appropriate classes of filters \mathbb{B} are sequentiality, Fréchetness, strong Fréchetness, productive Fréchetness, bisequentiality, and others (see, e.g., [4]).

Thms. 5.1 and 5.2 enable us to transfer some such coreflective properties from $C_{\alpha}(X, \mathbb{R})$ to $C_{\alpha}(X, \$)$ and vice versa.

If $H \subset X \times Y$, then $Hx := \{y \in Y : (x, y) \in H\}$, and if $A \subset X$ then $HA := \bigcup_{x \in A} Hx$. If now \mathcal{F} and \mathcal{H} are families of subsets of X and $X \times Y$ respectively, then

$$\mathcal{HF} := \{HF : F \in \mathcal{F}, H \in \mathcal{H}\}$$

is a family of subsets of Y. If \mathcal{F} and \mathcal{H} are filters, then, by a handy abuse of notation, \mathcal{HF} stands also for the filter it generates.

Let \mathbb{F}_{λ} denote the class of filters admitting a filter base of cardinality less than \aleph_{λ} . In particular, \mathbb{F}_0 is the class of *principal* filters, and \mathbb{F}_1 is the class of *countably based* filters. The class of all filters is denoted by \mathbb{F} .

A class \mathbb{B} of filters is \mathbb{H} -composable if $\mathcal{HF} \in \mathbb{B}$ for each $\mathcal{F} \in \mathbb{B}$ and every $\mathcal{H} \in \mathbb{H}$ (see [8], [13], [16]). A class \mathbb{B} of filters is \mathbb{H} -steady if $\mathcal{H} \lor \mathcal{F} \in \mathbb{B}$ for each $\mathcal{F} \in \mathbb{B}$ and each $\mathcal{H} \in \mathbb{H}$ (see [13], [16]).

If \mathbb{H} is a class of filters and γ is a filter subbase, then $\gamma \in \mathbb{H}$ means that the filter generated by γ belongs to \mathbb{H} .

By Th. 5.1,

Proposition 6.1. Let \mathbb{B} be \mathbb{F}_0 -composable and \mathbb{F}_1 -steady. If X is completely regular, α is a compact web, and $\alpha \in \mathbb{B}$, then $C_{\alpha}(X, \mathbb{R})$ is \mathbb{B} -based at $\tilde{0}$. If moreover \mathcal{D} is a hereditarily closed compact network, then $C_{\alpha \mathcal{D}}(X, \mathbb{R})$ is \mathbb{B} -based.

Proof. If $\alpha \in \mathbb{B}$ then $\Gamma_2^- \alpha \in \mathbb{B}$, because \mathbb{B} is \mathbb{F}_0 -composable. On the other hand, $\Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0)$ is a countably based filter, because $\mathcal{N}_{\mathbb{R}}(0)$ is countably based. Therefore, $\Gamma_2^- \alpha \vee \Gamma_3^- \overline{\mathcal{N}}_{\mathbb{R}}(0) \in \mathbb{B}$, because \mathbb{B} is \mathbb{F}_1 steady. Finally, $\mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0}) \in \mathbb{B}$ as the image by a map of a filter from \mathbb{B} . Therefore $C_{\alpha_{\mathcal{D}}}(X,\mathbb{R})$ is \mathbb{B} -based because $C_{\alpha_{\mathcal{D}}}(X,\mathbb{R})$ is homogeneous by Th. 4.8. \Diamond

Proposition 6.2. Let \mathbb{B} be \mathbb{F}_0 -composable. If α is a compact web, X is completely regular, and $C_{\alpha}(X, \mathbb{R})$ is \mathbb{B} -based, then $\alpha \in \mathbb{B}$.

Proof. If $C_{\alpha}(X, \mathbb{R})$ is \mathbb{B} -based, $\mathcal{N}_{\alpha(X,\mathbb{R})}(\tilde{0}) \in \mathbb{B}$, hence by Th. 5.2, $\alpha \in \mathbb{B}$, because \mathbb{B} is \mathbb{F}_0 -composable. \Diamond

Theorem 6.3. Let \mathbb{B} be \mathbb{F}_0 -composable and \mathbb{F}_1 -steady, and let \mathcal{D} be a hereditarily closed compact network on a completely regular space X. Then $C_{\alpha_{\mathcal{D}}}(X, \mathbb{R})$ is \mathbb{B} -based if and only if $\alpha_{\mathcal{D}} \in \mathbb{B}$.

F. Jordan established in [13, Th. 3] a special case of Th. 6.3 for $\alpha = \{\mathcal{O}(D) : D \in [X]^{<\aleph_0}\}$, hence concerning $C_p(X, \mathbb{R})$, in terms of γ connection (see Rem. 2.3). It is enough to replace in his proofs $[X]^{<\aleph_0}$ by any (additively stable) family \mathcal{D} of compact sets, in order that the
proofs remain valid for $\alpha = \{\mathcal{O}(D) : D \in \mathcal{D}\}$ and $C_{\mathcal{D}}(X, \mathbb{R})$.

Since α is a filter subbase of $\mathcal{N}_{\alpha(X,\$^*)}(X)$, and $\alpha(X,\$^*)$ is homeomorphic to $\alpha(X,\$)$ by complementation, we have

Corollary 6.4. Let \mathbb{B} be \mathbb{F}_0 -composable and \mathbb{F}_1 -steady, and let \mathcal{D} be a hereditarily closed compact network on a completely regular space X. Then $C_{\alpha_D}(X, \mathbb{R})$ is \mathbb{B} -based if and only if $\mathcal{N}_{\alpha_D(X,\$)}(\emptyset) \in \mathbb{B}$.

7. Transferable properties

We shall review several \mathbb{F}_0 -composable \mathbb{F}_1 -steady classes of filters, in other words, transferable local properties. Several results on composability and steadiness can be found in [13], [16].

We say that a property of topological spaces is *local* if there is a class \mathbb{P} of filters⁴ such that a topology has the property whenever each neighborhood filter belongs to \mathbb{P} . Character and tightness are examples of local properties.

Two families \mathcal{A} and \mathcal{B} of subsets of a given set *mesh* (in symbols, $\mathcal{A}\#\mathcal{B}$) if $A \cap B \neq \emptyset$ for each $A \in \mathcal{A}$ and $B \in \mathcal{B}$. The grill $\mathcal{A}^{\#}$ of a family \mathcal{A} of subsets of X is defined as $\{H \subset X : H\#\mathcal{A}\}$, where $H\#\mathcal{A}$ is an abbreviation for $\{H\} \#\mathcal{A}$. The *character* $\chi(\mathcal{F})$ of a filter \mathcal{F} is the least cardinal τ such that \mathcal{F} has a filter base of cardinality τ . The *tightness* $t(\mathcal{F})$ of a filter \mathcal{F} is the least cardinal τ for which if $A \in \mathcal{F}^{\#}$ then there is $B \subset A$ of cardinality τ such that $B \in \mathcal{F}^{\#}$. It was proved in [15] that **Proposition 7.1.** (Infinite) character and tightness are \mathbb{F}_0 -composable and \mathbb{F}_1 -steady.

A filter \mathcal{F} is \mathbb{G} to \mathbb{E} refinable [14] ($\mathcal{F} \in (\mathbb{G}/\mathbb{E})_{\geq}$) if for each filter $\mathcal{G} \in \mathbb{G}$ with $\mathcal{G} \# \mathcal{F}$ there exists a filter $\mathcal{E} \in \mathbb{E}$ such that $\mathcal{E} \geq \mathcal{F} \vee \mathcal{G}$; a filter \mathcal{F} is \mathbb{G} to \mathbb{E} me-refinable [14] ($\mathcal{F} \in (\mathbb{G}/\mathbb{E}) \#_{\geq}$) if for each filter $\mathcal{G} \in \mathbb{G}$ with $\mathcal{G} \# \mathcal{F}$ there exists a filter $\mathcal{E} \in \mathbb{E}$ such that $\mathcal{E} \geq \mathcal{F}$ and $\mathcal{E} \# \mathcal{G}$. The following two facts were observed in [14] in special cases of countably based filters.

Lemma 7.2. The property $(\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{>}$ is \mathbb{F}_{μ} -steady if $\mu \leq \kappa$.

⁴possibly depending on the topology.

Proof. Let $\mathcal{F} \in (\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}$, $\mathcal{E} \in \mathbb{F}_{\kappa}$ and $\mathcal{D} \in \mathbb{F}_{\mu}$ be such that $\mathcal{D}\#(\mathcal{E} \vee \mathcal{F})$. Then $(\mathcal{D} \vee \mathcal{E}) \# \mathcal{F}$ and $\mathcal{D} \vee \mathcal{E} \in \mathbb{F}_{\kappa}$, because $\mu \leq \kappa$; thus there is $\mathcal{G} \in \mathbb{F}_{\lambda}$ such that $\mathcal{G} \geq \mathcal{D} \vee \mathcal{E} \vee \mathcal{F}$. \diamond

Lemma 7.3. The property $(\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}$ is \mathbb{F}_{μ} -composable if $\mu \leq \kappa \wedge \lambda$. **Proof.** If $\mathcal{F} \in (\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}, \mathcal{E} \in \mathbb{F}_{\kappa}$ and $\mathcal{M} \in \mathbb{F}_{\mu}$ be such that $\mathcal{E}\#(\mathcal{MF})$. Then $\mathcal{M}^{-}\mathcal{E}\#\mathcal{F}$ and $\mathcal{M}^{-}\mathcal{E} \in \mathbb{F}_{\kappa}$ provided that $\mu \leq \kappa$. As $\mathcal{F} \in (\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}$ there is $\mathcal{G} \in \mathbb{F}_{\lambda}$ such that $\mathcal{G} \geq \mathcal{M}^{-}\mathcal{E} \vee \mathcal{F}$. Thus $\mathcal{MG} \geq \mathcal{M}(\mathcal{M}^{-}\mathcal{E} \vee \mathcal{F}) \geq$ $\geq \mathcal{E} \vee \mathcal{MF}$ and $\mathcal{MG} \in \mathbb{F}_{\lambda}$ provided that $\mu \leq \lambda$. \diamond

Fréchetness, strong Fréchetness, productive Fréchetness and bisequentiality are other examples of local properties that can be expressed in terms of refinable and me-refinable filters with respect to various classes (see [15] and a pioneering paper [5]). A filter \mathcal{F} is

(1) $Fréchet \iff \mathcal{F} \in (\mathbb{F}_0/\mathbb{F}_1)_{\geq}$: A filter \mathcal{F} is Fréchet if for each set A such that $A \# \mathcal{F}$ there exists a countably based filter \mathcal{E} such that $A \in \mathcal{E} \geq \mathcal{F}$.

(2) strongly Fréchet $\iff \mathcal{F} \in (\mathbb{F}_1/\mathbb{F}_1)_{\geq}$: A filter \mathcal{F} is strongly Fréchet if for each countably filter \mathcal{G} such that $\overline{\mathcal{G}} \# \mathcal{F}$ there exists a countably based filter \mathcal{E} such that $\mathcal{E} \geq \mathcal{F} \vee \mathcal{G}$.

(3) productively Fréchet $\iff \mathcal{F} \in \left((\mathbb{F}_1/\mathbb{F}_1)_{\geq}/\mathbb{F}_1 \right)_{\geq}$: A filter \mathcal{F} is productively Fréchet if for each strongly Fréchet filter \mathcal{G} such that $\mathcal{G} \# \mathcal{F}$ there exists a countably based filter \mathcal{E} such that $\mathcal{E} \geq \mathcal{F} \vee \mathcal{G}$.

(4) bisequential $\iff \mathcal{F} \in (\mathbb{F}/\mathbb{F}_1)_{\#\geq}$: A filter \mathcal{F} is bisequential if for each filter \mathcal{G} such that $\mathcal{G}\#\mathcal{F}$ there exists a countably based filter \mathcal{E} such that $\mathcal{E} \geq \mathcal{F}$ and $\mathcal{E}\#\mathcal{G}$.

Of course, in the first three conditions (but not in the fourth) the existence of a countably based filter \mathcal{E} is equivalent to the existence of a sequential filter⁵ \mathcal{E} . All these properties are \mathbb{F}_0 -composable. Not all are \mathbb{F}_1 -steady.

Proposition 7.4. Classes of strongly Fréchet, productively Fréchet and bisequential filters are \mathbb{F}_1 -steady; the class of Fréchet filters is not \mathbb{F}_1 -steady. All the listed properties are \mathbb{F}_0 -composable.

Proof. All the cases are proved in [16] except for bisequential filters. Let \mathcal{F} be bisequential and $\mathcal{E} \in \mathbb{F}_1$. If \mathcal{D} is any filter such that $\mathcal{D}\#(\mathcal{E}\vee\mathcal{F})$, then $(\mathcal{D}\vee\mathcal{E})\#\mathcal{F}$, hence there is $\mathcal{G} \in \mathbb{F}_1$ such that $\mathcal{G} \geq \mathcal{F}$ and $\mathcal{G}\#(\mathcal{D}\vee\mathcal{E})$. The filter $\mathcal{G}\vee\mathcal{E} \in \mathbb{F}_1$ and $\mathcal{G}\vee\mathcal{E}$ meshes with \mathcal{D} and $\mathcal{G}\vee\mathcal{E} \geq \mathcal{G} \geq \mathcal{F}$. Let \mathcal{F} be bisequential and A a relation. If \mathcal{D} is a filter such that $\mathcal{D}\#A\mathcal{F}$,

⁵A filter is *sequential* if it is generated by the queues of a sequence.

then $A^{-}\mathcal{D}\#\mathcal{F}$, hence there is $\mathcal{H} \in \mathbb{F}_1$ such that $\mathcal{H}\#A^{-}\mathcal{D}$ and $\mathcal{H} \geq \mathcal{F}$. Thus $A\mathcal{H}\#\mathcal{D}$ and $A\mathcal{H} \geq A\mathcal{F}$.

If \mathcal{F} is Fréchet but not strongly Fréchet, then there is $\mathcal{E} \in \mathbb{F}_1$ such that $\mathcal{G} \geq \mathcal{E} \lor \mathcal{F}$ for no $\mathcal{G} \in \mathbb{F}_1$. Hence $\mathcal{E} \lor \mathcal{F}$ is not Fréchet. \Diamond

8. Dictionary $X \longleftrightarrow \mathcal{O}_X$

Here there is a list of elementary equivalences that will be used to establish equivalences of more convoluted equivalences between properties of $C_{\alpha}(X, \$^*)$ and X. We consider only those collections α that are finitely stable, that is, $\mathcal{A}_0, \mathcal{A}_1 \in \alpha$ implies that $\mathcal{A}_0 \cap \mathcal{A}_1 \in \alpha$.

Let $Y \subset X$. A family \mathcal{B} of (open) subsets of X is called an α -cover of Y if $\mathcal{B} \cap \mathcal{A} \neq \emptyset$ for every $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A}$. In particular, if $\alpha = \{\mathcal{O}(D) : D \in [X]^{<\aleph_0}\}$, then an α -cover is an ω -cover, that is, for each finite set D there is $B \in \mathcal{B}$ such that $D \subset B$.

Lemma 8.1. A family \mathcal{B} meshes with $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if \mathcal{B} is an α -cover of Y.

Proof. A family \mathcal{B} meshes with $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if $\mathcal{B} \cap \mathcal{A} \neq \emptyset$ for each $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A}$. This means exactly that \mathcal{B} is an α -cover of Y. \Diamond

Let \mathcal{A}, \mathcal{B} be families of subsets of a given set. We say that \mathcal{A} is *coarser* than \mathcal{B} (equivalently, \mathcal{B} is *finer* than \mathcal{A})

$$\mathcal{A} \leq \mathcal{B}$$

if for every $A \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $B \subset A$. A collection of families of subsets of X can be considered as a family of subsets of 2^X . In this sense, we say that a collection is *finer* (*coarser*) than another collection. The following facts are just rewording of definitions, but we formulate them as lemmas for easy reference.

Lemma 8.2. A collection γ is finer than $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if for each $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A}$ there is $\mathcal{G} \in \gamma$ such that $\mathcal{G} \subset \mathcal{A}$.

Lemma 8.3. A collection γ is coarser than $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if and only if for each $\mathcal{G} \in \gamma$ there is $\mathcal{A} \in \alpha$ such that $Y \in \mathcal{A} \subset \mathcal{G}$.

In particular, a sequence $(G_n)_n$, that is, a family $\gamma := \{\{G_n : n \geq \geq m\} : m < \omega\}$ is finer than $\mathcal{N}_{\alpha(X,\$^*)}(Y)$ if for every $\mathcal{A} \in \alpha$ with $Y \in \mathcal{A}$ there is $n_{\mathcal{A}} < \omega$ such that $G_n \in \mathcal{A}$ for each $n \geq n_{\mathcal{A}}$.

8.1. Tightness

Recall that (see e.g., [17]) the α -Lindelöf number of a topological space X is the least cardinal τ such that for each α -cover there exists an α -subcover of cardinality less than or equal to τ .⁶

By Lemma $8.1,^7$

Theorem 8.4. The tightness of $C_{\alpha}(X, \$)$ is equal to the supremum of the α -Lindelöf numbers of open subsets of X.

Hence, by Cor. 3.2 and Th. 6.3,

Theorem 8.5. If α is a compact web on a completely regular space X, then $C_{\alpha}(X, \mathbb{R})$ is τ -tight if and only if the α -Lindelöf number of X is τ .

These facts specialize, in an obvious way, to *compact-open* topologies $C_k(X, Z)$, when $\alpha = \{\mathcal{O}(K) : K \in \mathcal{K}\}$ where \mathcal{K} is the family of compact subsets of X, to *Isbell* topologies $C_{\kappa}(X, Z)$, when $\alpha = \kappa(X)$ is the collection of compact families. If $\alpha = \{\mathcal{O}_X(D) : D \in [X]^{<\aleph_0}\}$ then Th. 8.5 specializes with $\tau = \aleph_0$ to

Proposition 8.6. If X is completely regular, then $C_p(X, \mathbb{R})$ is countably tight if and only if each open ω -cover of X has a countable ω -subcover of X.

Recall that a family \mathcal{P} is an ω -cover of X if for each finite subset F of X there is $P \in \mathcal{P}$ such that $F \subset P$.

The following theorem is due to Arhangel'skii [1] and Pytkeev [19]: **Theorem 8.7.** If X is completely regular, then $C_p(X, \mathbb{R})$ is countably tight if and only if X^n is Lindelöf for every $n < \omega$.

8.2. Character

A subset γ of a collection α (of openly isotone families) is a *base* of α if for each $\mathcal{A} \in \alpha$ there is $\mathcal{G} \in \gamma$ such that $\mathcal{G} \subset \mathcal{A}$. The least cardinality τ such α has a base of cardinality τ is called the *character* $\chi(\alpha)$ of α .

⁶More generally, if $\kappa \leq \lambda$ are cardinals, then we say that X is $\lambda/\kappa[\alpha]$ -compact if for every open α -cover of X of cardinality $< \lambda$ there is an α -subcover of cardinality $< \kappa$ of X. In particular, a topological space is $[\alpha]$ -compact if it is $\lambda/\aleph_0[\alpha]$ -compact for each cardinal λ , countably $[\alpha]$ -compact if it is $\aleph_1/\aleph_0[\alpha]$ -compact, $[\alpha]$ -Lindelöf if it is $\lambda/\aleph_1[\alpha]$ -compact for every λ .

⁷Similar characterizations can be formulated for λ/κ -tightnes with $\kappa \geq \aleph_0$. We say that a filter \mathcal{F} is λ/κ -tight if for each $H \in \mathcal{F}^{\#}$ with card $H < \lambda$ there is $B \subset H$ such that card $B < \kappa$ and $B \in \mathcal{F}^{\#}$. A topological space is λ/κ -tight if its every neighborhood filter is λ/κ -tight.

Because the character of α is a hereditary property, Lemma 8.2 implies that

Theorem 8.8. The character of $C_{\alpha}(X, \$)$ is equal to the character of α . It follows from Cor. 3.3 and Prop. 6.2 that

Theorem 8.9. If α is a compact web on a completely regular space X, then the character of $C_{\alpha}(X, \mathbb{R})$ is equal to the character of α .

Corollary 8.10. If X is T_1 , then $C_p(X, \$)$ is of countable character if and only if X is countable.

Proof. By Th. 8.8, the character of $C_p(X, \$)$ is countable, if and only if for every open subset Y of X there is a sequence $(x_n)_n \subset Y$ such that $\{\mathcal{O}_X(\{x_1,\ldots,x_n\}): n < \omega\}$ is finer than $\{\mathcal{O}_X(F): F \in [X]^{<\aleph_0}\}$, that is, for every finite subset F of Y there is $n < \omega$ such that $\{x_1,\ldots,x_n\} \subset O$ implies $F \subset O$ for each open set O. Since X is T_1 , this means that $F \subset \{x_1,\ldots,x_n\}$. \diamond

Corollary 8.11. If X is T_1 , then $C_k(X, \$)$ is of countable character if and only if X is hereditarily hemicompact.

Proof. Let Y be an open subset of X. The neighborhood filter $\mathcal{N}_{\mathcal{K}(X,\$^*)}(Y)$ is countably based if and only if there exists a sequence $(K_n)_n$ of compact subsets of Y such that for every $K \in \mathcal{K}_Y$ there exists n such that $\mathcal{O}_X(K_n) \subset \mathcal{O}_X(K)$, which, for a T_1 -topology, is equivalent $K \subset K_n$.

It is well-known that a (Hausdorff) topological vector space is metrizable if and only if it is of countable character. Therefore, we recover [17, p. 60]

Corollary 8.12. If X is completely regular, then $C_p(X, \mathbb{R})$ is metrizable if and only if it is of countable character if and only if X is countable.

Corollary 8.13. If X is completely regular, then $C_k(X, \mathbb{R})$ is metrizable if and only if it is of countable character if and only if X is hemicompact.

8.3. Variants of Fréchetness

Here we characterize some of the properties $(\mathbb{H}/\mathbb{E})_{\geq}$ of hyperspaces in terms of their underlying spaces.

Proposition 8.14. $C_{\alpha}(X, \$)$ is $(\mathbb{F}_{\kappa}/\mathbb{F}_{\lambda})_{\geq}$ -based if and only if X enjoys the following property: For each open subset Y of X, for every collection γ of α -covers of Y with card $(\gamma) \leq \aleph_{\kappa}$, there exists a collection ζ of families of open sets with card $(\zeta) \leq \aleph_{\lambda}$ such that for every $\mathcal{A} \in \alpha$ with $Y \in \mathcal{A}$, and each $\mathcal{G} \in \gamma$ there exists $\mathcal{Z} \in \zeta$ such that $\mathcal{Z} \subset \mathcal{A} \cap \mathcal{G}$.

As we have observed in preliminary considerations, the property exhibited in the proposition above is necessarily hereditary for open sets. The class $(\mathbb{F}_0/\mathbb{F}_1)_{\geq}$ is that of *Fréchet filters*, and $(\mathbb{F}_1/\mathbb{F}_1)_{\geq}$ that of *strongly Fréchet filters*. In the following corollaries we will use sequence characterizations of these properties: a filter \mathcal{F} is *Fréchet* if for each $H \in \mathcal{F}^{\#}$ there is a sequence $(x_n)_n \subset H$ that is finer than \mathcal{F} ; a filter \mathcal{F} is *strongly Fréchet* if for each decreasing sequence $(H_n)_n$ such that $H_n \in \mathcal{F}^{\#}$ for each n, there is a sequence $(x_n)_n$ finer than \mathcal{F} and such that $x_n \in H_n$ for each n. Prop. 8.14 specializes as follows:

Corollary 8.15. $C_{\alpha}(X, \$)$ is Fréchet at $X_0 \in C(X, \$)$ if and only if for each family \mathcal{G} of open sets such that $\mathcal{G} \cap \mathcal{A} \neq \varnothing$ for each $X \setminus X_0 \in \mathcal{A} \in \alpha$, there exists a sequence $(G_n)_n \subset \mathcal{G}$ such that for each $X \setminus X_0 \in \mathcal{A} \in \alpha$, there is $n_{\mathcal{A}} < \omega$, for which $G_n \in \mathcal{A}$ for every $n \ge n_{\mathcal{A}}$.

Corollary 8.16. $C_{\alpha}(X, \$)$ is strongly Fréchet at $X_0 \in C(X, \$)$ if and only if for each decreasing sequence $(\mathcal{G}_n)_n$ of families of open sets such that $\mathcal{G}_n \cap \mathcal{A} \neq \emptyset$ for each $X \setminus X_0 \in \mathcal{A} \in \alpha$, there exists a sequence $(G_n)_n$ with $G_n \in \mathcal{G}_n$ such that for each $X \setminus X_0 \in \mathcal{A} \in \alpha$, there is $n_{\mathcal{A}} < \omega$, for which $G_n \in \mathcal{A}$ for every $n \ge n_{\mathcal{A}}$.

Of course, the sequence $(G_n)_n$ fulfills the condition above if and only if it converges to $X \setminus X_0$ in $C_{\alpha}(X, \$^*)$. In the case of $\alpha = \alpha_{\mathcal{D}}$, where $\mathcal{D} = [X]^{<\aleph_0}$, it is equivalent to $X \setminus X_0 \subset \underline{\operatorname{Lim}}_n G_n := \bigcup_{n < \omega} \bigcap_{k > n} G_k$ (the set-theoretic lower limit). In particular, for $X_0 = \emptyset$ the condition above is the condition (γ) of Gerlits and Nagy [10]: if \mathcal{G} is an open ω -cover of X, then there is a sequence $G_n \in \mathcal{G}$ with $\underline{\operatorname{Lim}}_n G_n = X$.

As we have seen in Prop. 7.4, Fréchetness is not \mathbb{F}_1 -steady. Nevertheless, it is known that a Fréchet topological group is strongly Fréchet (see [18]). Therefore

Theorem 8.17. If \mathcal{D} is a compact network on a completely regular space X, then $C_{\alpha_{\mathcal{D}}}(X, \mathbb{R})$ is Fréchet if and only if it is strongly Fréchet if and only if for every \mathcal{D} -cover \mathcal{P} of X there is a sequence $(P_n)_n \subset \mathcal{P}$ such that for each $D \in \mathcal{D}$ there is $n_D < \omega$ such that $P_n \in \mathcal{A}$ for each $n \geq n_D$.

Acknowledgement. I am thankful to Professor Frédéric Mynard (Georgia Southern, Statesboro) for several helpful comments and for having pointed out some errors in the preliminary version of this paper.

References

- ARHANGEL'SKII, A. V.: Construction and classification of topological spaces and cardinal invariants, Uspehi Mat. Nauk 33 (1978), 29–84.
- [2] ARHANGEL'SKII, A. V.: Topological Function Spaces, Mathematics and Its Applications, Kluwer, 1992.
- [3] DAY, B. J. and KELLY, G. M.: On topological quotient maps preserved by pullbacks or products, *Proc. Camb. Phil. Soc.* 67 (1970), 553–558.
- [4] DOLECKI, S.: Convergence-theoretic methods in quotient quest, *Topology Appl.* 73 (1996), 1–21.
- [5] DOLECKI, S.: Active boundaries of upper semicontinuous and compactoid relations; closed and inductively perfect maps, *Rostock. Math. Coll.* 54 (2000), 51–68.
- [6] DOLECKI, S., GRECO, G. H. and LECHICKI, A.: When do the upper Kuratowski topology (homeomorphically, Scott topology) and the cocompact topology coincide? *Trans. Amer. Math. Soc.* 347 (1995), 2869–2884.
- [7] DOLECKI, S. and MYNARD, F.: Relations between convergence function spaces, hyperspaces and underlying spaces, to appear.
- [8] DOLECKI, S. and MYNARD, F.: Convergence-theoretic mechanisms behind product theorems, *Topology Appl.* 104 (2000), 67–99.
- [9] GEORGIOU, D. N., ILIADIS, S. D. and PAPADOPOUPLOS, B. K.: On dual topologies, *Topology Appl.* 140 (2004), 57–68.
- [10] GERLITS, J. and NAGY, ZS.: Some properties of $C_p(X)$, Topology Appl. 14 (1982), 151–161.
- [11] GIERZ, G., HOFMANN, K. H., KEIMEL, K., LAWSON, J. D., MISLOVE, M. W. and SCOTT, D. S.: Continuous lattices and domains, Cambridge Univ. Press, 2003.
- [12] GRUENHAGE, G.: Products of Fréchet spaces, *Topology Proceedings* **30** (2006), 475–499.
- [13] JORDAN, F.: Productive local properties of function spaces, *Topology Appl.* 154 (2007), 870–883.
- [14] JORDAN, F., LABUDA, I. and MYNARD, F.: Finite products of filters that are compact relative to a class of filters, *Applied General Topology* 8 (2) (2007), 161–170.
- [15] JORDAN, F. and MYNARD, F.: Productively Fréchet spaces, Czechoslovak Math. J. 54 (129) (2004), 981–990.
- [16] JORDAN, F. and MYNARD, F.: Compatible relations of filters and stability of local topological properties under supremum and product, *Topology Appl.* 153 (2006), 2386–2412.
- [17] MCCOY, R. A. and NTANTU, I.: Topological Properties of Spaces of Continuous Functions, Springer-Verlag, 1988.

- [18] NYIKOS, P.: Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (4) (1981), 793–801.
- [19] PYTKEEV, E. G.: Sequentiality of spaces of continuous functions, Uspekhi Mat. Nauk 37 (5-227) (1982), 197–198.