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Abstract. Convergence theory offers a versatile and effective frame-
work to topology and analysis. Yet, it remains rather unfamiliar to many
topologists and analysts. The purpose of this initiation is to provide,
in a hopefully comprehensive and easy way, some basic ideas of conver-
gence theory, which would enable one to tackle convergence-theoretic
methods without much effort.
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1. Introduction

Convergence theory offers a versatile and effective framework for topol-
ogy and analysis. Yet, it remains rather unfamiliar to many topologists and
analysts. The purpose of this initiation is to provide, in a hopefully compre-
hensive and easy way, some basic ideas of convergence theory, which would
enable one to tackle convergence-theoretic methods without much effort. Of
course, the choice of what is essential, reflects the research experience of the
author.



AN INITIATION INTO CONVERGENCE THEORY 3

A relation between the filters on a set X and the elements of X, denoted
by

x ∈ limF ,

is called a convergence on X, provided that F ⊂ G implies limF ⊂ limG,
and that the principal ultrafilter of every element is in this relation with
the element. Each topological space defines a convergence space (on the
same set) to the effect that x ∈ limF whenever F contains every open set
containing x. A convergence defined in this way is said to be topological.

Non-topological convergences arise naturally in analysis, measure the-
ory, optimization and other branches of mathematics: in topological vector
spaces,1 there is in general no coarsest topology on the space of continuous
linear forms, for which the coupling function is continuous; convergence in
measure and convergence almost everywhere are, in general, not topological;
stability of the minimizing set is, in general, non-topological.

A non-topological convergence can be a natural formalism of a stability
concept. On the other hand, often a non-topological convergence arises as
a solution of a problem formulated in purely topological terms.

A crucial example is the convergence structure resulting from the search
for a power with respect to topologies τ and σ, that is, the coarsest topology
θ on C(τ , σ) such that the natural coupling2

〈x, f〉 = f(x)

be (jointly) continuous from τ × θ to σ. It turned out that this problem has
no solution unless τ is locally compact [4], but there is always a convergence,
denoted by [τ , σ], which solves the problem. In other terms, the category of
topological spaces is not exponential (in a predominant terminology, Carte-
sian closed) but it can be extended to an exponential category, that of
convergence spaces. Actually there exist strict subcategories of the category
of convergence spaces that include all topologies and are exponential (for
example, that of pseudotopologies). 3

In a fundamental paper [8] Gustave Choquet studies natural convergences
on hyperspaces4, and concludes that some of them are not topological unless
the underlying topology is locally compact, but are always pseudotopologi-
cal. The notion of pseudotopology was born. From a perspective of posterior
research, these non-topological convergences were power convergences with
respect to a special coupling topology.

1See [5] of R. Beattie and H.-P. Butzmann.
2C(τ , σ) stands for the set of maps, which are continuous from a topology τ on X to

a topology σ on Z.
3G. Bourdaud showed in [6] that the least exponential reflective subcategory of con-

vergences, which includes topologies, is that of epitopologies of P. Antoine [3].
4A hyperspace is a set of closed subsets of a topological space (more generally, of a

convergence space).
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I do not intend to give here a historical account of convergence theory.
Let me only mention that non-topological convergences called pretopologies5

were already studied by F. Hausdorff [31], W. Sierpiński [40] and E. Čech
[7]. An actual turning point however was, in my opinion, the emergence of
pseudotopologies in [8] of Gustave Choquet.

2. Filters

A fundamental concept of convergence theory is that of filter. A non-
empty family F of subsets of a set X is called a filter on X if

∅ /∈ F ;(1)

G ⊃ F ∈ F =⇒ G ∈ F ;(2)

F0, F1 ∈ F =⇒ F0 ∩ F1 ∈ F .(3)

Remark 1. The family 2X (of all subsets of X) is the only family that
fulfills (2) and (3) but not (1). We call 2X the degenerate filter on X. As
2X does not fulfill all the assumptions above, it is not considered, despite its
name, as a (full right) filter. So by a filter I mean a non-degenerate filter,
unless I explicitly admit a degenerate filter.

A subfamily B of F such that for every F ∈ F there is B ∈ B with B ⊂ F
is called a base of F . We say that B generates F ; if B0 and B1 generate the
same filter, then we write B0 ≈ B1; in particular if B is a base of F then
B ≈ F .

If you study topologies, you study filters, whether you like it or not.
In fact, for every filter F on a given set X there is a unique topology on

either X or on {∞} ∪X determined by F . Let me explain this statement.

2.1. Neighborhood filters. If X is a topological space, then for every
x ∈ X, the set N (x) (of neighborhoods of x) is a filter.6

Recall that a topology is prime if it has at most one non-isolated point.7

If H is a filter on Y and X ⊂ Y , then the trace H|X of H on X is defined
by

H|X = {H ∩X : H ∈ H}.
This is a (non-degenerate) filter provided that H ∩X 6= ∅ for every H ∈ H.
A filter F is free whenever

⋂
F∈F F = ∅. If π is a Hausdorff prime topology

on Y and ∞ ∈ Y is not isolated, then the trace of Nπ(∞) on X is a free
filter on X. Conversely

Proposition 2. For every free (possibly degenerate) filter F on X there
exists a (unique) Haudorff prime topology on {∞} ∪X such that the trace
of the neighborhood filter of ∞ is equal to F .

5by Choquet in [8]
6A set V is a neighborhood of x if there exists an open set O such that x ∈ O ⊂ V .
7An element x of a topological space is isolated if {x} is a neighborhood of x.
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Proof. If F is a free filter on X, then define a topology π on the disjoint union
Y = {∞} ∪ X so that every x ∈ X is isolated, and Nπ(∞) = {{∞} ∪ F :
F ∈ F}.8 Then the trace of Nπ(∞) on X is F .

On the other hand,

Proposition 3. If F is a filter on X and
⋂
F∈F F 6= ∅, then there is a

unique topology π on X such that F = Nπ(x) for every x ∈
⋂
F∈F F , and x

is isolated for each x /∈
⋂
F∈F F .9

2.2. Principal filters. If A ⊂ X then the family (A)• = {B ⊂ X : A ⊂ B}
is a filter, called the principal filter of A. This filter is degenerate if and only
if A = ∅, because A ∈ (A)•, and A is the least element of it. The family
{A} is the smallest base of (A)•.

2.3. Cofinite filters. IfA ⊂ X then the family (A)◦ = {B ⊂ X : card(A\B) <
∞} is a filter, called the cofinite filter of A. This filter is degenerate if and
only if A is finite, because A\∅ is finite whenever A is finite. The family
{A\F : F ⊂ A, cardF <∞} is a base of (A)◦.

2.4. Sequential filters. We say that a sequence (xn)n of elements of X
generates a filter S on X (in symbols S ≈ (xn)n) if the family {{xn : n ≥
m} : m <∞} is a base of S. A filter on X is called sequential if there exists
a sequence (xn) = (xn)n that generates it.10

2.5. Countably based filters. A filter is said to be countably based if it
admits a countable base. Principal filters and sequential filters are special
cases of countably based filters.

Example 4. Let (An)n be a descending sequence of sets such that card(An\An+1) =
∞ and

⋂
n<∞An = ∅. Then {An : n < ∞} is a base of a free countably

based filter, which is not sequential.

2.6. Grills. Two families A,B of subsets of X mesh (in symbols, A#B) if
A∩B 6= ∅ for every A ∈ A and B ∈ B; the grill of a family A of subsets of
X is

A# = {B ⊂ X : ∀A∈A A ∩B 6= ∅}.
A family A is isotone if B ⊃ A ∈ A implies B ∈ A. If A isotone then11

(4) H /∈ A# ⇔ Hc ∈ A.
Let Ω ⊂ X × Y be a relation. Then the image by Ω of x is given by

Ωx = {y ∈ Y : (x, y) ∈ Ω}.
8This topology is discrete if and only if F is degenerate.
9In fact, this topology π is defined so that a set A is open if either A ∩

T
F∈F F = ∅

or A ∈ F .
10A filter E is sequential if and only if E contains a countable set, and admits a countable

base B such that B1\B0 is finite for every B0, B1 ∈ B.
11By definition, H /∈ A# whenever there is A ∈ A such that H ∩ A = ∅, equivalently

Hc ⊃ A, that is, Hc ∈ A, because A is istone.
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Consequently the image ΩA of A ⊂ X by Ω is

ΩA =
⋃

x∈A
Ωx,

and the preimage Ω−B of B ⊂ Y by Ω is the image of B by the inverse
relation of Ω. Thus Ω−B = {x ∈ X : Ωx∩B 6= ∅}. We notice the following
useful equivalence

ΩA#B ⇔ A#Ω−B ⇔ (A×B) #Ω.

In particular, if f : X → Y then f(A) and f−(B) are respectively the image
and the preimage by the graph relation {(x, y) : y = f(x)}. In particular, I
denote by f−(y) the preimage of y by f .

If F is a filter, then F ⊂ F#. Notice also that if F is a filter, then12

(5) H0 ∪H1 ∈ F# ⇒ (H0 ∈ F# or H1 ∈ F#).

2.7. Order, ultrafilters. We say that a filter F is coarser than a filter G
(G is finer than F) if F ⊂ G. If B is a base of F and B ⊂ G, then F ⊂ G.

Remark 5. We can loosely say that the smaller the sets belonging to a filter,
the finer is the filter. Formally, if B0 is a base of a filter F0, and B1 of F1,
and for every B ∈ B0 there is D ∈ B1 with D ⊂ B, then F0 ⊂ F1.

Of course, this partial order is induced on the set ϕX (of all filters on
X) from that of all the families of subsets of X. We denote by F ∨ G the
supremum and by F ∧ G the infimum of two filters F and G.

Remark 6. The supremum of filters F ,G in the ordered set of filters exists
if and only if F#G. If it does not exist, then the supremum of F and G in
the complete lattice of all the families of subsets is, of course, equal to the
degenerate filter.

Remark 7. Occasionally I use the symbols ∨ and ∧ (respectively) for the
supremum and the infimum in the partially ordered set of filter bases. This
notation is not ambiguous, because in the case when the considered filter
bases are filters, their supremum and infimum are filters too.

The infimum
∧
j∈J Fj exists for an arbitrary set {Fj : j ∈ J} of filters on

X, and ∧
j∈J
Fj =

⋂
j∈J
Fj

(the coarsest filter is {X}, the principal filter of X), while
∨
j∈J Fj exists

whenever ∅ /∈ B = {
⋂
j∈J0

Fj : J0 ⊂ J, card J0 < ∞}, and in this case B is
a base of

∨
j∈J Fj . By the Zorn-Kuratowski lemma, for every filter F on X

there exists a maximal filter U , which is finer than F , called an ultrafilter.
The set of all the ultrafilters finer than F is denoted by βF .

12In fact, if H0 /∈ F# and H1 /∈ F# , then Hc
0 ∈ F and Hc

1 ∈ F , hence Hc
0 ∩Hc

1 ∈ F
thus H0 ∪H /∈ F#.
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If f : X → Y and F is a filter on X, then f(F) = {f(F ) : F ∈ F}
is a filter base on Y . We shall use the symbol f(F) also for the filter it
generates.13

A filter F is an ultrafilter if and only if F# = F .14 It follows that
If U is an ultrafilter, then f(U) is an ultrafilter.
Moreover ifW ∈ βf(F), then there exists U ∈ βF such thatW = f(U).15

2.8. Decomposition. A filter F is called free if
⋂
F∈F F = ∅. The cofinite

filter is free. In fact, if F is a free filter and A ∈ F then F ⊃ (A)◦.16

Proposition 8 (Filter decomposition). [15] For every filter F on X, there
exists a unique pair of (possibly degenerate) filters F◦,F• such that F◦ is
free, F• is principal, and17

(6) F = F◦ ∧ F• and F◦ ∨ F• = 2X .

In particular, every sequential filter admits such a decomposition. Notice
that

Proposition 9. A filter is sequential and free if and only if it is the cofinite
filter of a countably infinite set.

Proof. If (xn)n is a sequence, then we set An = {xk : k ≥ n}. Accordingly,
(xn)n is free if and only if

⋂
n<∞An = ∅. The sequential filter generated

by (xn)n is the cofinite filter of Am for each m, because Am\An is finite
for every n < ∞ and (An)n is a base of it. Conversely, if S is the cofinite
filter of a countably infinite set A, then represent A = {xk : k <∞}, where
xm 6= xk if m 6= k. Then {An : n <∞} is a base of S, so that S ≈ (xn)n.

Proposition 10. A filter is sequential and principal if and only if it is the
principal filter of a countable set.

Proof. Indeed, if A is finite (of cardinality 0 < m <∞) then we can represent
A = {a1, a2, . . . , am} and (A)• is sequential, because the sequence

a1, a2, . . . , am, a1, a2, . . . , am, a1, a2, . . . , am, . . .

13This abuse of notation should not lead to any confusion.
14If a filter F is not an ultrafilter, then there is a filter G ! F . Therefore F  G ⊂

G# ⊂ F#. Conversely, if there is H ∈ F# \ F , then F ∨ H is a filter that is obviously
finer than F and that contains H. Since H /∈ F , the filter F is not maximal.

15Let W be an ultrafilter finer than f(F). Equivalently, f−(W)#F , hence there exists
an ultrafilter U finer than F ∨ f−(W), so that U ∈ βF and U#f−(W). The latter is
equivalent to f(U)#W thus f(U) =W.

16Indeed, if x ∈ A and F is free, then there is F ∈ F such that x /∈ F , that is, F ⊂ {x}c
thus {x}c ∈ F . As each finite intersection of elements of a filter belongs to that filter,
A\D ∈ F for every finite subset D of A. Hence (A)◦ ∈ F .

17Let F• be the principal filter of F• =
T
F∈F F. Then F◦ = F ∨ F c• is free, and

obviously (6) holds. If now (A)• is a principal filter finer than F , then A ⊂ F•, hence
F ∨Ac is free if and only if A = F•, which shows the uniqueness of the decomposition.
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generates (A)•; if A is countably infinite, then we can represent A = {an :
n ∈ N} where an 6= ak for n 6= k. Then the sequence

a1, a1, a2, a1, a2, a3, . . . , a1, a2, . . . , an . . .

generates (A)•.

2.9. Stone transform. Let me shortly mention the Stone space of a given
set X, that is, the set βX of all ultrafilters on X endowed with the Stone
topology. The Stone transform β associates to every filter F on X, the set
βF of ultrafilters that are finer than F . It is clear that F0 ⊂ F1 implies
βF0 ⊃ βF1.18 A base for the open sets of the Stone topology consists of the
Stone transforms of principal filters, that is, {βA : A ⊂ X}. This topology
is compact.19

It is well-known that

Proposition 11. A subset of the Stone space is closed if and only if it is of
the form βF , where F is a (possibly degenerate) filter.20

3. Basic classes of convergences

If ξ is an arbitrary relation between the non-degenerate filters F on X
and the elements x of X, then we write

(7) x ∈ limξ F

whenever (x,F) ∈ ξ and say that the filter F converges to x with respect
to ξ (equivalently, x is a limit of F with respect to ξ). A relation ξ is a
convergence if

F ⊂ G =⇒ limξ F ⊂ limξ G,(8)

∀x∈X x ∈ limξ(x)•,(9)

where (x)• is the principal ultrafilter determined by x.21

18Moreover, β(F0 ∨ F1) = βF0 ∩ βF1 and β(F0 ∧ F1) = βF0 ∪ βF1.
19If {βD : D ∈ D} is a cover of βX, then there is a finite subfamily A of D such that

βX ⊂
S
A∈A βA, for otherwise β(

T
A∈AA

c) =
T
A∈A β(Ac) 6= ∅ for each finite subfamily

A of D. In other words, {
T
A∈AA

c : A ⊂ D, cardA < ∞} is a filter base. If now U
is an ultrafilter that includes it, then a fortiori Dc ∈ U for each D ∈ D, hence D /∈ U
(equivalently U /∈ βD) for each D ∈ D, which is a contradiction.

20If F is a filter and U /∈ βF then there is H ∈ F\U so that the Stone open (and
closed) set βH contains U and is disjoint from βF . Conversely, if A is a Stone closed set,
then F =

T
U∈A U is a filter such that βF = A. By construction each U ∈ A belongs

to βF . If W /∈ A there is an open, closed set of the form βW such that W ∈ βW and
βW ∩ A = ∅, that is, β(W c) ⊃ A, that is W c ∈ U for each U ∈ A, hence W c ∈ F and
thus W /∈ βF .

21There are several definitions of convergence. Many authors add to the set of our
axioms, a third one like limF0 ∩ limF1 ⊂ lim(F0 ∩ F1) (H. J. Kowalsky [36]), or x ∈
limF ⇒ x ∈ lim ((x)• ∩ F) (e.g., D. C. Kent, G D. Richardson [34]).
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Remark 12. If ξ is a convergence on a set X, then the couple (X, ξ) is called
a convergence space. The set, on which a convergence ξ is defined, is called
the underlying set of ξ. Notice that an underlying set is determined by a
convergence thanks to (9); we denote the underlying set of a convergence ξ by
|ξ|. Consequently a convergence determines the corresponding convergence
space. Therefore I will use the terms convergence and convergence space
interchangeably.

Example 13. If τ is a topology on a set X then we define the associated
convergence by x ∈ limτ F whenever Nτ (x) ⊂ F . This relation fulfills (8)
and (9),22 so that we can identify each topology with its associated (topo-
logical) convergence. Notice that a topological convergence fulfills

x ∈ limN (x)

for every x ∈ X, and the neighborhood filter N (x).

Here is a basic example of a non-topological convergence.

Example 14. If ν is the natural topology on R, then we define a convergence
Seq ν on X by setting x ∈ limSeq ν F , whenever there exists a sequential filter
E such that E ⊂ F and x ∈ limν E. This defines a convergence, which is not
a topology. Indeed, Nν(0) =

⋂
{E : 0 ∈ limSeq ν E} but there is no sequential

filter which is coarser than Nν(0), hence 0 /∈ limSeq ν Nν(0).23

We say that a convergence ξ is finer than a convergence θ (in symbols,
ξ ≥ θ) if limξ F ⊂ limθ F for every filter F . If Ξ is a set of convergences on
X, then the supremum and the infimum of Ξ are given by

lim∨ΞF =
⋂
ξ∈Ξ

limξ F , lim∧ΞF =
⋃
ξ∈Ξ

limξ F .

The greatest element of the set of all convergences on X is the discrete
topology ι = ιX of X, which is defined by x ∈ limιF whenever F is the
principal ultrafilter of x.24 The least element is the chaotic topology (called
also indiscrete topology) o = oX on X, defined by limoF = X for every filter
F on X.

3.1. Topologies. A subset O of a convergence space is open if limF∩O 6= ∅
implies that O ∈ limF . The family Nξ(x) of all the sets V such that there
exists a ξ-open set O such that x ∈ O ⊂ V , is a filter, called the neighborhood
filter of x for ξ and is denoted by Nξ(x). The family Oξ of all the open sets
of a convergence ξ fulfills all the axioms of open sets of a topology.

22In fact, we have defined a functor, which embeds the category of topologies in that
of convergences.

23Indeed, Nν(0) ⊂
T
{E : 0 ∈ limSeq ν E} by the definition of Seq ν, and if A /∈ Nν(0)

then Ac ∈ Nν(0)# hence for every n <∞ there is xn ∈ Ac ∩{x : |x| < 1
n
}. In other words

A belongs to a sequential filter (generated by) (xn), which is finer than Nν(0).
24In fact, the convergence of the principal ultrafilter of x to x is postulated by the

definition of convergence.
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Conversely, if T is the family of open sets of a topological space, then

(10) x ∈ limT F ⇔ (x ∈ T ∈ T ⇒ T ∈ F)

defines a convergence. Convergences constructed in this way are called
topologies. For every convergence ξ there exists the finest topology that
is coarser than ξ called the topologization of ξ and denoted by Tξ. This the
convergence constructed with the aid of (10) with T = Oξ. It is straightfor-
ward that OTξ = Oξ. Therefore T fulfills

ζ ≤ ξ ⇒ Tζ ≤ Tξ;
Tξ ≤ ξ;

T (Tξ) = Tξ.

for every ζ and ξ. It follows that the set of all topologies (on a given set)
is closed for arbitrary suprema. Moreover, the coarsest convergence on X is
the chaotic topology on X.

Example 15. Take the convergence Seq ν of Example 14. By definition of
open set for a convergence, a set is open for Seq ν if and only if it is sequen-
tially open, hence if it is open for ν, because ν is a sequential topology.25

Therefore T (Seq ν) = ν.

The complement of an open set is said to be closed. The least ξ-closed
set, which includes A is called the ξ-closure of A and is denoted by clξ A.
We notice that

(11) x ∈ clξ A⇔ A ∈ N#
ξ (x).

Proof. We have that x /∈ clξ A whenever there is an open set O such that
x ∈ O and O ∩A = ∅, that is, whenever A /∈ N#

ξ (x).

3.2. Sequentially based convergences. A convergence ξ is sequentially
based if whenever x ∈ limξ F , then there exists a sequential filter E such
that E ⊂ F and x ∈ limξ E . If (xn)n is a sequence that generates E then we
write x ∈ limξ(xn)n whenever x ∈ limξ E .26

Denote by εX the set of sequential filters on X. If θ is an arbitrary
convergence of X,

x ∈ limSeq θ F ⇐⇒ ∃E∈εX (x ∈ limθ E and E ⊂ F)

defines a sequentially based convergence Seq θ. It is straightforward that for
every ζ and ξ,

(12)
ζ ≤ ξ ⇒ Seq ζ ≤ Seq ξ;

ξ ≤ Seq ξ;
Seq(Seq ξ) = Seq ξ.

25A topology is sequential if every set closed for convergent sequences is closed.
26This is an example of the obvious and natural extension of convergences from filters

to filter bases.
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A topology is a sequentially based convergence, if and only if each neigh-
borhood filter is generated by a sequence. Therefore the sequential modifier
Seq can be used to produce numerous examples of non-topological conver-
gences, as in Example 14.

3.3. Convergences of countable character. A convergence ξ is of count-
able character provided that if x ∈ limξ F then there exists a countably
based filter E such that E ⊂ F and x ∈ limξ E . Each sequentially based
convergence is of countable character; Example 14 is that of a topology of
countable character, which is not sequentially based. The modifier (of count-
able character) First θ of an arbitrary convergence θ is defined similarly to
Seq θ; the map First has the same properties as Seq in (12).

3.4. Pretopologies. A convergence ξ is called a pretopology if27

(13)
⋂
F∈F

limξ F ⊂ limξ(
⋂
F∈F
F)

for every set F of filters. It follows that for every element x of a pretopological
space, there exists a coarsest filter that converges to x. For every element x
let

(14) Vξ(x) =
⋂

x∈limξ F
F

be the vicinity filter of x for a convergence ξ; the elements of the vicinity
filter of x are called vicinities of x. By (13) ξ is a pretopology if and only
if x ∈ limξ Vξ(x) for every x. If A is a non-empty subset of a pretopological
space (X, ξ) then Vξ(A) =

⋂
x∈A Vξ(x) is the vicinity of A.

A set is open if it is a vicinity of each of its elements.28

Every topology is a pretopology; if ξ is a topology, then Vξ(x) ⊂ Nξ(x)
for every x, and since the inverse inclusion always holds,

(15) ξ = Tξ ⇒ Vξ(x) = Nξ(x)

Let us give an example of a non-topological pretopology.

Example 16. Let X = {x∞} ∪ {xn : n < ∞} ∪ {xn,k : n, k < ∞}, where
all the elements are distinct. We define a convergence π by xn,k ∈ limπ F
whenever F = (xn,k)•, xn ∈ limπ F whenever (xn)• ∧ (xn,k)k ⊂ F , and
x∞ ∈ limπ F provided that (x∞)• ∧ (xn)n ⊂ F . The convergence π is a
pretopology and a sequentially based convergence. Indeed, for every element,
there is a coarsest filter converging to that element, that is, a vicinity filter.
The elements of the form xn,k are isolated, hence {xn,k} ∈ Vπ(xn,k) for
each n, k < ∞; Vπ(xn) ≈ (xn)• ∧ (xn,k)k for every n < ∞; Vπ(x∞) ≈
(x∞)• ∧ (xn)n. It is not a topology, because if O such that x∞ ∈ O is an

27This definition of pretopology is due to G. Choquet [8]. However an equivalent
concept was considered by F. Hausdorff [31], W. Sierpiński [40] and E. Čech [7].

28If A is open and x ∈ A, then A ∈ V(x), because every filter, which converges to x,
contains A, and conversely.
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open set, then there is n0 such that xn ∈ O for every n ≥ n0 and there is
κ(n) < ∞ such that xn,k ∈ O for each k > κ(n). The neighborhood filter
Nπ(x∞), which is generated by

{x∞} ∪ {xn : n > n0} ∪ {xn,k : k > κ(n), n > n0},

where n0 < ∞ and κ : N → N, does not converge to x∞. Actually we have
already described the topologization Tπ of π, namely NTπ(x∞) = Nπ(x∞)
was given above, and we have described NTπ(x) = Vπ(x) if x 6= x∞.29

It can be easily seen that the set of all pretopologies (on a given set) is
closed for arbitrary suprema, and that the coarsest convergence on a given
set is the chaotic topology on that set. This is equivalent to the existence
of a map P associating with every convergence ξ the finest pretopology Pξ
that is coarser than ξ. This map is called the pretopologizer and fulfills

ζ ≤ ξ ⇒ Pζ ≤ Pξ
Pξ ≤ ξ

P (Pξ) = Pξ

for every ζ and ξ. The pretopologizer can be easily written explicitly. There-
fore x ∈ limPζ F if and only if Vζ(x) ⊂ F .

Remark 17. A network of a topological space (X, τ) is a family P of subsets
of X such that for each x ∈ X and O ∈ Nτ (x) there is P ∈ P such that
x ∈ P ⊂ O. A network is called a weak base whenever each subset B
of X, with the property that for every x ∈ B there is P ∈ P such that
x ∈ P ⊂ B, is open. For example, the family of all singletons is a network,
which is not a weak base unless the topology is discrete. Let P be a family
of subsets of X, which covers X. Then the family of finite intersections of
{P ∈ P : x ∈ P} is a filter base; the filter VP(x) it generates is a vicinity
filter of a pretopology, which we denote by πP . It follows immediately from
the definitions that

Proposition 18. A family P is a network of τ if and only if πP ≥ τ ; a
family P is a weak base of τ if and only if TπP = τ .

4. Continuity

Let ξ be a convergence on X and τ be a convergence on Y. A map f :
X → Y is continuous (from ξ to τ) if for every filter F on X,

(16) f(limξ F) ⊂ limτ f(F).

It follows that the composition of continuous maps is continuous. A bijective
map f such that both f and f− are continuous is called a homeomorphism.

29Notice that NTξ(x) = Nξ(x) for every convergence ξ and each x ∈ |ξ|.
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4.1. Initial convergences. For every map f : X → Y and each conver-
gence τ on Y, there exists the coarsest among the convergences ξ on X for
which f is continuous (from ξ to τ). It is denoted by f−τ and called the
initial convergence for (f, τ).30 If V ⊂ X and θ is a convergence on X, then
the initial convergence such that the embedding i : V → X is continuous is
called a subconvergence of θ on V and is denoted by θ ∨ V .

Let τ i be a convergence and fi : X → |τ i| be a map for every i ∈ I. Then
the coarsest convergence on X, for which fi is continuous for each i ∈ I, is
called the initial convergence with respect to {fi : i ∈ I}. Of course, it is
equal to

∨
i∈I f

−
i τ i. It is straightforward that

Proposition 19. If ξ is the initial convergence with respect to {fi : i ∈ I}
then x ∈ limξ F if and only if fi(x) ∈ lim fi(F) for every i ∈ I.

4.2. Final convergences. For every map f : X → Y and each convergence
ξ on X, there exists the finest among the convergences τ on Y for which f is
continuous (from ξ to τ). It is denoted by fξ and called the final convergence
for (f, ξ) (or the quotient of ξ by f).31

Let ξi be a convergence and fi : |ξi| → Y be a map for every i ∈ I. Then
the finest convergence on Y , for which fi is continuous for each i ∈ I, is
called the final convergence with respect to {fi : i ∈ I}. Of course, it is
equal to

∧
i∈I fiξi.

It is good to have in mind this immediate observation.

Proposition 20. The following statements are equivalent:

f is continuous from ξ to τ ;
fξ ≥ τ ;

ξ ≥ f−τ .

4.3. Continuity in subclasses. One easily sees that the preimage of an
open set by a continuous map is open.32 Hence if τ is a topology, then f−τ
is a topology.33 Similarly, if τ is a pretopology, then f−τ is a pretopology.34

Therefore if f is continuous from ξ to τ , then it is continuous also from Pξ to
Pτ , and from Tξ to Tτ .35 It is also easy to notice that if ξ is a sequentially

30Indeed, it follows from (16) that if f is continuous from ξ to τ , then limξ F ⊂
f−(limτ f(F)). Therefore limf−τ F = f−(limτ f(F)).

31It is straightforward that limfξ G =
S
f(F)≤G f(limξ F). Indeed y ∈ limfξ G whenever

there exists a filter F such that limξ F ∩ f−(y) 6= ∅ and G ≥ f(F).
32Let f be continuous from ξ to τ , let O ∈ O(τ) and let x ∈ limξ F ∩ f−(O). It follows

that f(x) ∈ limτ f(F) and f(x) ∈ O, hence O ∈ f(F). Therefore f−(O) ∈ F .
33Let f−(O) ∈ F for every τ -open set O such that x ∈ f−(O). It follows that

O ⊃ ff−(O) ∈ f(F) and f(x) ∈ O and thus f(x) ∈ limτ f(F), hence x ∈ f−(f(x)) ⊂
f−(limτ f(F)) = limf−τ F .

34From the category theory point of view, topologies and pretopologies are concrete re-
flective subcategories of the category of convergences with continuous maps as morphisms.

35By Proposition 20, ξ ≥ f−τ , hence Tξ ≥ T (f−τ). On the other hand f−τ ≥ f−(Tτ)
and the latter convergence is a topology. Therefore Tξ ≥ f−(Tτ).



14 SZYMON DOLECKI

based convergence, then fξ is also sequential.36 It follows (by Proposition
20 for instance) that if f is continuous from ξ to τ , then it is continuous also
from Seq ξ to Seq τ .

4.4. Products. If ξ and υ are convergences on X and Y respectively, then
the product convergence ξ × υ on X × Y is defined by

(x, y) ∈ limξ×υ F
whenever there exist filters G on X and H on Y such that x ∈ limξ G, y ∈
limυH and G ×H ≤ F .37

In other words, a filter converges to (x, y) in the product convergence if
and only if its projections converge to x and y respectively.

More generally, let Ξ be a set of convergences such that ξ is a convergence
on Xξ for ξ ∈ Ξ. The product convergence

∏
Ξ =

∏
ξ∈Ξ ξ is the coarsest

convergence on
∏
ξ∈ΞXξ, for which each projection pθ :

∏
ξ∈ΞXξ → Xθ is

continuous. In other words,
∏

Ξ =
∨
ξ∈Ξ p

−
ξ ξ.

In particular, each (convergence) product of topologies (respectively, of
pretopologies) is a topology (respectively, a pretopology).

4.5. Powers. If X and Z are sets, hence ZX is the set of all maps from X
to Z, then the map

e = 〈·, ·〉 : X × ZX → Z

defined by e(x, f) = 〈x, f〉 = f(x) is called the evaluation map. If ξ is a
convergence on X and σ on Z, then C(ξ, σ) stands for the subset of ZX

consisting of all the maps continuous from ξ to σ. The power (convergence)
[ξ, σ] (of ξ with respect to σ) is the coarsest among the convergences τ on
C(ξ, σ) for which the evaluation is continuous from ξ × τ to σ.

The power [ξ, σ] exists for arbitrary convergences ξ and σ.38

Let us describe explicitly the power convergence. If G is a filter on X, ξ
is a convergence on X, and F is a filter on C(ξ, σ), then 〈G,F〉 stands for
the filter generated by {

⋃
f∈F f(G) : G ∈ G, F ∈ F}. Then

f ∈ lim[ξ,σ]F
if and only if f(x) ∈ limσ〈G,F〉 for every x ∈ |ξ| and filter G on |ξ| such that
x ∈ limξ G.

The definition above was already given by H. Hahn [30] for sequential
filters F . As mentioned in the introduction, power convergences constituted

36From the category theory point of view, sequential convergences constitute a con-
crete coreflective subcategory of the category of convergences with continuous maps as
morphisms.

37The product filter G ×H is the filter generated by {G×H : G ∈ G, H ∈ H}.
38Indeed, if ι is the discrete topology on C(ξ, σ), then e is continuous from ξ × ι to

σ if and only if e(·, f) is continuous from ξ to σ for every f . Now, if T is a set of
convergences on X such that ξ × τ ≥ e−σ for each τ ∈ T, then ξ ×

V
Tτ ≥ e−σ, because

(x, f) ∈ limξ×
V
τ∈T τ H if and only if there exist filters F and G such that x ∈ limξ F and

f ∈
S
τ∈T limτ G.
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a decisive point in the development of convergence theory. And they remain
a most important object of study till today.

5. Adherences

An important notion in convergence theory is that of adherence. If ξ is a
convergence on X and H is a family of subsets of X, then

adhξH =
⋃
F#H

limξ F

is the adherence of H. Therefore if U is an ultrafilter, then adhξ U = limξ U .
Clearly, adhξ A ⊂ adhθA if ξ ≥ θ.

Recall that a family A is isotone if B ⊃ A ∈ A implies B ∈ A. If A,B
are isotone families, then39

adh 2X = ∅;

adh(A ∩ B) = adhA ∪ adhB.

It follows that G ⊃ F implies adhG ⊂ adhF .
If A is a subset of a convergence space (X, ξ), then adhξ A (an abbreviation

for adhξ{A} = adhξ(A)•) is the adherence of a set A. It follows that the
operation of adherence of sets fulfills

adh∅ = ∅;

adh(A ∪B) = adhA ∪ adhB;
A ⊂ adhA.

for every A and B. Therefore A ⊂ B implies adhA ⊂ adhB.

Remark 21. The vicinity filter was defined in (14) for an arbitrary con-
vergence. Notice that

(17) x ∈ adhξ A⇔ A ∈ V#
ξ (x).

If X is a fixed set, then I denote Ac = X\A for each A ⊂ X.

Proposition 22. If ξ is a topology, then the (set) adherence adhξ is idem-
potent and equal to the closure clξ.

Proof. If x /∈ adhξ A then there is V ∈ Vξ(x) such that V ∩ A = ∅, and
if ξ is a topology, then by (15) there is an open set O such that x ∈ O
and O ∩ A = ∅. Therefore x /∈ Oc ⊃ clξ A. Because clξ A is closed, and
adhξ A ⊂ clξ A, also adh2

ξ A = adhξ(adhξ A) ⊂ clξ A.

39Indeed, a filter F does not mesh neither A nor B if and only if there exist F0, F1 ∈ F
and A ∈ A, B ∈ B such that F0∩A = ∅ and F1∩B = ∅, equivalently F0∩F1∩(A∪B) = ∅.
Because A,B are isotone, the elements of A∩B are of the form A∪B with A ∈ A, B ∈ B.
Thus F does not mesh with A ∩ B, because F0 ∩ F1 ∈ F .
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Remark 23. If ξ is a convergence on X and F is a filter on X, then we
denote by adh\ξ F the filter generated by {adhξ F : F ∈ F}. Therefore we

distinguish between the set adhξ F and the filter adh\ξ F . Similarly cl\ξ F
denotes the filter generated by {clξ F : F ∈ F}.

Dual notions of adherence and of closure are those of respectively inher-
ence and interior, namely

inhA = (adhAc)c, intA = (clAc)c.

Notice that x ∈ inhA if and only if A ∈ V(x), and x ∈ intA if and only if
A ∈ N (x).

6. Covers

Let (X, ξ) be a convergence space. A family P of subsets of X is a cover of
B ⊂ X if limξ F ∩B 6= ∅ implies that F ∩P 6= ∅. As for every convergence
each principal ultrafilter converges to its defining point, each cover P of B is
a set-theoretic cover of B, that is, B ⊂

⋃
P.40 Let us investigate the notion

of cover in special cases.

Example 24. If ξ is a pretopology, then the coarsest filter that converges to
x is the vicinity filter Vξ(x). Therefore P is a cover of B in ξ if and only if
for every x ∈ B there exists P ∈ P with P ∈ Vξ(x), equivalently x ∈ inhξ P .
In other words, P is a cover of B in ξ if and only if B ⊂

⋃
P∈P inhξ P .

In particular, if ξ is a topology, then this becomes B ⊂
⋃
P∈P intξ P . In

other words, P is a cover of a subset B of a topological space if and only if
{intP : P ∈ P} is an (open) set-theoretic cover of B.41

We denote Pc = {P c : P ∈ P}.

Theorem 25. [13] A family P is a cover of B if and only if

(18) adhPc ∩B = ∅.

Proof. By definition, (18) means that if a filter F converges to an element
of B then F does not mesh with Pc, that is, there exist F ∈ F and P ∈ P
such that F ∩P c = ∅, equivalently F ⊂ P , that is, F ∩P 6= ∅, which means
that P is a cover of A.

Notice that in general Pc in (18) is not a filter, even not a filter base.
A family R is an ideal if S ⊂ R ∈ R implies S ∈ R, and if

⋃
T ∈ R for

each finite T ⊂ R. Clearly, R is an ideal if and only if Rc is a (possibly
degenerate) filter. Denote by P̃ the least ideal including P. Then (P̃)c is the

40If ξ ≤ ζ then each ξ-cover of B is a ζ-cover of B. Then the last statement follows
from the observation that P is a set-theoretic cover of B if and only if P is a cover of B
for the discrete topology ι.

41In each convergence space, a family of open sets is a cover if and only if it is a
set-theoretic cover.
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(possibly degenerate) filter generated by the finite intersections of elements
of Pc.42

Remark 26. In a topological space, if P is a family of open sets and P̃ is
a cover of B, then P is also a cover of B,43 and on the other hand, for each
cover P of B the family {intP : P ∈ P} is an open cover of B.

7. Compactness

If A and B are subsets of a topological space X, then A is called (rel-
atively) compact at B if for every open cover of B there exists a finite
subfamily, which is a cover of A.44 It is known that
A is compact at B if and only if for every filter H,

(19) A ∈ H# ⇒ adhH ∩B 6= ∅.

If A and B are subsets of a convergence space X, then we take the charac-
terization above for the definition.45

Proposition 27. A set A is compact at B if and only if A ∈ P for every
ideal cover P of B.

Proof. Formula (19) means that adhH ∩ B = ∅ implies that A /∈ H#, and
because H is isotone, Ac ∈ H by (4), hence by Theorem 25, if Hc is a cover
of B then A ∈ Hc. As H is a filter, Hc is an ideal.

In general convergence spaces there exists a notion of cover-compactness,
which is (in general, stricly) stronger than that of compactness.46

42Notice that if B is base of a filter F then adhB = adhF . However adhH is (in
general, strictly) bigger than adh{

T
G : G ⊂ H, cardG <∞}.

For example, if H = {H0, H1} then adhH = adhH0 ∩ adhH1 while the adherence of
the (filter generated by) finite intersections of elements of H is adh(H0 ∩H1).

43Indeed, for every x ∈ B there is a finite subset T of P such that x ∈
S
T , hence

there is P ∈ T ⊂ P such that x ∈ P .
44Many authorssay that a topological space X is compact if it is Hausdorff and if is

compact at X (in the sense of our definition).
45If A is compact at B in the topological sense, and P is an ideal cover of B, then by

Remark 26 {intP : P ∈ P} is an open cover of B, hence there is a finite subfamily R of
P such that {intP : P ∈ R} is a cover of A, so that A ⊂

S
R ∈ P, thus by Propostion

27 A is compact at B in the convergence sense. Conversely, if A is compact at B in the
convergence sense and P is an open cover of B then by Remark 26 P̃ is an ideal cover of
B, thus by Propostion 27 there is a finite subfamily R of P such that A ⊂

S
R.

46A is cover-compact at B if for each cover P of B there is a finite subfamily R of P
which is a cover of A. If A is cover-compact at B then A is compact at B. Indeed, the
condition holds in particular for ideal covers, and a finite family R is a cover of A, then a
fortiori A ⊂

S
R. It suffices to use Proposition 27 to conclude. The converse is not true

in general. Take the pretopology from Example 16. Let A = {x∞} ∪ {xn : n < ∞} and
An = {xn} ∪ {xn,k : k < ∞}. The set A is compact at itself but not cover-compact at
itself. In fact, every free ultrafilter on A converges to x∞. On the other hand, the family
P = {A} ∪ {An : n < ∞} is a cover of A but no finite subfamily is a cover of A. The
subfamily {F} ∪ {Fn : n < m} is not a cover of F , because each vicinity of xm+1 includes
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If a subset A of a convergence space X is compact at X, then I call
it relatively compact. A subset of a convergence space is compact if it is
compact at itself.

7.1. Compact families. Our definitions have an obvious natural extension
to families of sets [16]. Let A,B be families of subsets of X. Then A is
compact at B if for every filter H,

(20) A#H ⇒ adhH ∈ B#.

A family A is relatively compact if it is compact at (the whole space) X,
and compact if it is compact at itself.47,48 These notions generalize not only
that of (relatively) compact sets, but also of convergent filters. In fact,

Every convergent filter is relatively compact.49

More precise relationship between convergence and compactness will be
given in Proposition 34. It is immediate that the image of a compact filter
by a continuous map is compact.

Theorem 28 (Tikhonov theorem). A filter (on a product of convergence
spaces) is relatively compact if and only if its every projection is relatively
compact.

Proof. The necessity follows from the preceding remark. As for the suf-
ficiency, let F be a filter on

∏
Ξ. Let U be an ultrafilter with U#F .

This implies pξ(U)#pξ(F) for each ξ ∈ Ξ, and since pξ(F) is ξ-relatively
compact there is xξ ∈ Xξ such that xξ ∈ limξ pξ(U), which means that
(xξ)ξ ∈ limQ

Ξ U .

No separation condition has been required in the definition of compact-
ness.

7.2. Weaker versions of compactness. I will now weaken the definition
(20) of compactness by restricting the class of filters H. Let H be a class of
filters. A family A (of subsets of a convergence space) is H-compact at B
(another family of subsets of that space) if

∀H∈H H#A ⇒ adhH ∈ B#.

all but finitely elements of Fm+1. The ideal P̃ is a fortiori a cover of A, for which no
element is a cover of A.

47This is a terminological turnover with respect to the previous papers of mine and
of my collaborators, where the term compactoid was used for all the sorts of relative
compactness. The present choice is done for the sake of simplicity, and follows that of
Professor Iwo Labuda of the University of Mississippi. The term compactoid space was
introduced by Gustave Choquet [8] for compact space without any separation axiom.

48If B = {B} then we say compact at B instead of compact at B; if moreover, B = {x}
then we say compact at x.

49Actually if x ∈ limF then F is compact at x. Indeed, if H#F then there is an
ultrafilter U finer than H ∨ F , hence x ∈ limU = adhU ⊂ adhH.
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If H is the class of all filters, then H-compactness is equivalent to com-
pactness.50

7.3. Countable compactness. If H is the class of countably based filters,
then H-compactness is equivalent to countable compactness.

7.4. Finite compactness. If H is the class of principal filters, then H-
compactness is called finite compactness. This property is very broad (and
useless) in the case of sets. Indeed, a subset A in a Hausdorff topological
space is finitely compact at a set B if and only if A ⊂ B. However the notion
is far from being trivial and useless in the context of filters [11].

Proposition 29. A filter F is finitely compact at a set B if and only if
V(B) ⊂ F .

Proof. By definition, F is finitely compact at B if adhH ∩B 6= ∅ for every
H ∈ F#. Equivalently, if adhH ∩ B = ∅, that is, if Hc ∈ V(B) then
Hc ∈ F .

7.5. Sequential compactness. By definition, a convergence ξ is sequen-
tially compact if for every sequential filter (equivalently, for every countably
based filter) E there exists a sequential filter F ⊃ E such that limξ F 6= ∅.
Notice that

adhSeq ξ E =
⋃
F∈εE

limξ F ,

where εE stands for the set of sequential filters finer than E . In other words,51

Proposition 30. A T1 convergence ξ is sequentially compact if and only if
Seq ξ is countably compact.

8. Adherence-determined convergences

8.1. Pseudotopologies. A convergence ξ is a pseudotopology if x ∈ limξ F
whenever x ∈ limξ U for every ultrafilter U finer than F , that is, if

(21) limξ F ⊃
⋂
U∈βF

limξ U .

50A family A is relatively H-compact if it is H-compact at the whole space. A is H-
autocompact if is H-compact at itself. So far I used the term H-compact for the property
above, but Iwo Labuda convinced me that that terminology was not appropriate. In fact,
if A is a family of subsets of X such that A = {A} with A  X, then it is H-compact
if A (with the convergence induced from X ) is H-compact. This property is, in general,
different from that of H-autocompactness of A. Of course, the two notions coincide in
case when H is the class of all filters. In other words, compactness of sets is absolute (that
is, independent of environment). I prefer however the term H-autocompact to Labuda’s
H-selfcompact, as the latter has a mixed (English-Latin) origin.

51This result is due to Ivan Gotchev [26, Theorem 3.6] for topologies T0.
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This means that each pseudotopology is determined by the limits of all
ultrafilters.52

Example 31 (non-pseudotopological convergence). In an infinite set X
distinguish an element ∞, and define a convergence on X as follows: the
principal ultrafilter (x)• converges to x, and for each finite subset F of β◦X,
the set of all free ultrafilters on X, one has {∞} = lim

⋂
U∈F U . This con-

vergence is not a pseudotopology, because if F is a free filter such that βF
is infinite,53 then ∞ /∈ limF but ∞ ∈ limU for each U ∈ βF .54

The set of pseudotopologies on a given set is stable for arbitrary suprema
and contains the chaotic topology. As a result, for every convergence ζ there
exists the finest among coarser pseudotopologies, the pseudotopologization
Sζ of ζ. It is straightforward that

limSζ F =
⋂
U∈βF

limζ U .

The pseudotopologizer is isotone, expansive and idempotent. As we have
seen, this property holds also for the topologizer and the pretopologizer.
The following property is particular for the pseudotopologizer:

Proposition 32. If Θ is a set of convergences on X, then

S(
∨

Θ) =
∨
θ∈Θ

Sθ.

This proposition is very important for the sequel. Therefore, I shall pro-
vide its proof, even though it is straightforward and simple.

Proof. By definition, limW
θ∈Θ Sθ F

=
⋂
θ∈Θ

⋂
U∈βF

limθ U =
⋂
U∈βF

⋂
θ∈Θ

limθ U =
⋂
U∈βF

lim∨Θ U = S(lim∨ΘF).

As for the topologizer and the pretopologizer, the pseudotopologizer ful-
fills S(f−τ) ≥ f−(Sτ) for every convergence τ . The pseudotopologizer
has another particular property (with important implications in topology).
Namely,

(22) S(f−τ) = f−(Sτ)

for every convergence τ and each map f .

52Each pseudotopology ξ onX can be characterized with the aid of the Stone transform.
For every x let Vξ(x) be the set of all ultrafilters which converge to x in ξ. Then by (21)
x ∈ limξ F if and only if βF ⊂ Vξ(x). It follows that each map V : X → βX such that
(x)• ∈ V(x) for each x defines a pseudotopology.

53It is known (e.g., [23, Theorems 3.6.11 and 3.6.14]) that if card(β◦F) is infinite, then

it is at least 22ℵ0 .
54This convergence is a a prototopology, that is, fulfilling limF0∩limF1 ⊂ lim(F0∩F1).
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Proof. Indeed, if x ∈ limf−(Sτ)F then equivalently f(x) ∈ limSτ f(F), that
is, f(x) ∈ limτ U for every U ∈ βf(F). If nowW ∈ βF , then f(W) ∈ βf(F)
and thus f(x) ∈ limτ f(W), equivalently x ∈ limf−τ W, which means that
x ∈ limS(f−τ)F .

Because the product is the supremum of initial convergences with respect
to the projections on component spaces, we get an important

Theorem 33 (prototheorem of Tikhonov).

(23) S(
∏

Ξ) =
∏
ξ∈Ξ

Sξ

for every set of convergences Ξ.

The relationship between compactness and pseudotopological convergence
is very close. In fact,

Proposition 34. A filter F is ξ-compact at x if and only if x ∈ limSξ F .

Proof. Indeed, x ∈ limSξ F if and only if x ∈ limξ U for every U ∈ βF , which
is equivalent to the compactness of F at x.

We notice that the generalization of the classical Tikhonov Theorem 28
can be easily deduced from the Tikhonov prototheorem (Theorem 33).

8.2. Narrower classes of adherence-determined convergences. If H
is a class of filters, then

(24) limAH ξ F =
⋂

H3H#F
adhξH

defines a convergence AH ξ obtained from the original convergence ξ. Of
course, if H is the class of all filters, then AH is the pseudotopologizer. More
generally,

Theorem 35. [10] An AH-convergence is a

pseudotopology⇔ H is the class of all filters;(25)

paratopology⇔ H is the class of countably based filters;(26)

pretopology⇔ H is the class of principal filters;(27)

Actually, paratopologies were defined in [10] as the convergences fulfilling
(26) of Theorem 35.

Proof. (25) For each convergence ξ, if H#F then limξ F ⊂ adhξH, hence
limξ F ⊂

⋂
H#F adhξH. If ξ is a pseudotopology, then

⋂
H#F adhξH ⊂⋂

U∈βF limξ U ⊂ limξ F . Conversely, if
⋂
H#F adhξH ⊂ limξ F then

⋂
U∈βF limξ U ⊂

limξ F , because for every filter H#F there is an ultrafilter U ≥ H∨F , that
is, U ∈ βF and adhξH ⊃ limξ U .

(27) Suppose that ξ is a pretopology and let x ∈ adhξH for everyH ∈ F#.

Since x ∈ adhξH amounts to H ∈ V#
ξ (x), we infer that F# ⊂ V#

ξ (x), that is,
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F ⊃ Vξ(x), that is x ∈ limξ F . Conversely, suppose that
⋂
H∈F# adhξH ⊂

limξ F and F ⊃ Vξ(x), but x /∈ limξ F . Hence there exists H ∈ F# such
that x /∈ adhξH. The latter means that H /∈ V#

ξ (x), that is, F# is not a

subfamily of V#
ξ (x) 6= ∅, equivalently Vξ(x) is not a subfamily of F , which

yields a contradiction.

It turns out that (22) extends to the discussed modifiers. Indeed, if H is
an F0-composable class of filters (that is, if a H ∈ H is a filter on X and
Ω ⊂ X × Y , then ΩH ∈ H) and AH is given by (24), then [21, Theorem 19]
states that

AH(f−τ) = f−(AHτ)

for every convergence τ and each map f . In particular, the formula above
holds for the pretopologizer and the paratopologizer.

The topologizer can be also described by a formula of the type (24), but
with a class H which depends on topologies. I prefer instead to give another,
more direct, formula

(28) limTξ F =
⋂

H∈F#

clξH.

Proof. One has x /∈ limTξ F if and only if there exists a ξ-open set O such
that x ∈ O /∈ F , equivalently x /∈ Oc ∈ F#, that is, there is H = clξH ∈ F#

such that x /∈ H. As H ∈ F# implies clξH ∈ F#, we infer (28).

It turns out that each class of adherence-determined convergences corre-
sponds to a version of compactness. Namely,

Theorem 36. [12] Let H be a class of filters. A filter F is H-compact at x
for ξ if and only if x ∈ limAH ξ F .

Proof. A filter F is H-compact at x for ξ whenever x ∈ adhξH for every
filter H ∈ H such that H#F , that is, whenever x ∈ limAH ξ F .

We conclude that compactness is of pseudotopological nature, countable
compactness of paratopological and finite compactness of pretopological.

Adherence-determined Compactness variant
Pseudotopologies Compactness
Paratopologies Countable compactness
Pretopologies Finite compactness

It is easy to construct pseudotopologies, which are not pretopologies,
using the following

Remark 37. Recall that if ξ is a pseudotopology, and Vξ(x) stands for the
set of ultrafilters that converge to x in ξ, then

(29) x ∈ limξ F ⇔ βF ⊂ Vξ(x).
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A pseudotopology ξ is a pretopology if and only if Vξ(x) is closed with respect
to the Stone topology for each x.[10, Proposition A.1]55

The following remark enables one to construct paratopologies which are
not pretopologies.

Remark 38. Let Gδβ stand for the topology on βX such that a neighborhood
base of U ∈ βX consists of Gδ subsets (with respect to the Stone topology of
βX) which contain U . A pseudotopology ξ is a paratopology if and only if
Vξ(x) is Gδβ-closed for each x.[10, Proposition A.2]56

Here is an example of a pseudotopology τ such that τ > Pωτ > Pτ =
Tτ .57

Example 39. This is a pseudotopology τ on a countably infinite set X,
in which all elements but one are isolated, that is, if x is not equal to a
distinguished element ∞, then (x)• is the only filter that converges to x.
To define τ at ∞, let B be a subset of β◦X (the set of all free ultrafilters
on X), which is Gδβ-closed and is not Stone-closed.58 Let U ∈ B and set
B0 = B\{U}. Then B0 6= clGδβ B0 6= clβ B0, where the latter stands for the
Stone closure of B0. If we set Vτ (∞) = B0 ∪ {∞}, then by virtue of the
preceding remarks VPωτ (∞) = clGδβ B0 and VPτ (∞) = clβ B0. Because all
other points are isolated, Pτ = Tτ .

55Indeed, β(Vξ(x)) = clβ Vξ(x), where Vξ(x) is the vicinity filter of x for ξ by virtue of
(29). Therefore ξ is a pretopology if and only if x ∈ limξ Vξ(x), that is, whenever Vξ(x) is
β-closed.

Actually, if VPξ(x) is the set of all ultrafilters that converge to x in Pξ, then

VPξ(x) = clβ Vξ(x).

56If ξ is a paratopology and an ultrafilter U /∈ Vξ(x), that is, x /∈ limξ U by virtue of
(29), then by (24) there is a countably based filter H, coarser than U and such that x /∈
adhξH. Let (Hn)n be a decreasing sequence that generates H. Then βH =

T
n<ω βHn.

No W ∈ βH converges to x in ξ, that is, βH is a Gδ set disjoint from Vξ(x), which proves
that Vξ(x) is Gδβ -closed. If ξ is a pseudotopology, but not a paratopology, then there
exist x, an ultrafilter U such that x /∈ limξ U but x ∈ adhξH for each countably based
filter H coarser than U . Therefore U /∈ Vξ(x) but βH ∩ Vξ(x) 6= ∅ for each βH from
{βH : H ∈ Fω,H ≥ U}, which is a neighborhood base of U in Gδβ. This shows that Vξ(x)
is not Gδβ -closed. Actually,

VPωξ(x) = clGδβ Vξ(x).

57A slight modification of this example [22, Example 5] provides a pseudotopology ξ
such that ξ > Pωξ > Pξ > Tξ.

58Such sets exist, because if (An)n is a descending sequence of infinite subsets of the
set N of natural numbers such that An\An+1 is infinite, then the supremum of cofinite
filters (An)◦ is not cofinite but admits a finer cofinite filter (of an infinite set). In terms
of the Stone transform, the intersection of Stone open (and closed) sets A =

T
n<∞ β◦An

is not open (is Gδ of course), but intA 6= ∅.
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9. Diagonality and regularity

If N (x) is a neighborhood filter of a topology on X, then N (A) =⋂
x∈AN (x) is the neighborhood filter of a subset A of X. If A is a family

of subsets, then let

(30) N (A) =
⋃
A∈A
N (A).

In other words, B ∈ N (A) whenever there is A ∈ A such that B ∈ N (x) for
each x ∈ A.

Example 40. In particular, if A = N (x0) then

N (N (x0)) = N (x0).

Indeed, N (N (x0)) ⊂ N (x0) because if B ∈ N (N (x0)) then there is A ∈
N (x0) such that B ∈ N (x) for each x ∈ A, in particular B ⊃ A hence
B ∈ N (x0). Conversely, if B ∈ N (x0), that is, B is a neighborhood, then
by a fundamental property of neighborhoods of a topological space, there is a
neighborhood A of x0 such that B is a neighborhood of every x ∈ A, that is,
B ∈ N (N (x0)).

Formula (30) defines a special contour. The example above shows that
in topological spaces, the contour of the family of neighborhoods along a
neighborhood of x0, converges to x0. We shall see that this means that
topologies are diagonal convergences.

Regularity can be also expressed in terms of contours, and is in some
sense (that we will make precise in a moment) inverse to diagonality. It turns
out that for Hausdorff compact pseudotopologies, diagonality and regularity
coincide.59

9.1. Contours. Consider a family F of subsets of a set X and for every
x ∈ X, let G(x) be a family of subsets of Y . The contour of F over G(·) (or
of G(·) along F) is the following family of subsets of Y :

(31) G(F) =
⋃
F∈F

⋂
x∈F
G(x).

When F = {F}, then we abridge G(F ) =
⋂
x∈F G(x). Consequently,

G(F) =
⋃
F∈F G(F ). If E is a filter generated by (xn)n and F(n) is a filter

generated by (xn,k)k for every n, then the contour F(E) is denoted by∫
(n)

(xn,k)k.

If F is a filter on the underlying set |ξ| of a convergence ξ, then the symbol
adh\ξ F denotes the filter generated by {adhξ F : F ∈ F}. In the particular

59This is due to the minimality of compact pseudotopologies.
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case, where G(x) = Vθ(x) for every x,60 we have the following extension of
Remark 21:

(32) A#Vθ(B)⇐⇒ (adh\θA)#B.

Proof. Indeed, let A ∈ A and B ∈ B be such that A#
⋂
x∈B Vθ(x), equiv-

alently A ∈
⋃
x∈B V

#
θ (x), that is, A ∈ V#

θ (x) for some x ∈ B. This is
tantamount to x ∈ adhθ A ∩B and the proof is complete.

9.2. Hausdorff convergences. A convergence is said to be Hausdorff if
every limit is at most a singleton. If a convergence ξ happens to be Hausdorff,
then we will often write x = limξ F as an abbreviation for {x} = limξ F .

Compact Hausdorff pseudotopologies are minimal among Hausdorff pseu-
dotopologies,61 namely

Proposition 41. If ζ ≥ ξ are pseudotopologies, ζ is compact and ξ is
Hausdorff, then ζ = ξ.

Proof. Because ξ and ζ are pseudotopologies, it is enough to show that
they coincide for ultrafilters. Let U be an ultrafilter and x ∈ limξ U . By
compactness, ∅ 6= adhζ U = limζ U ⊂ limξ U = {x} because ξ is Hausdorff,
thus x ∈ limζ U .

A convergence ξ is topologically Hausdorff if Tξ is Hausdorff.

Proposition 42. Each topologically Hausdorff compact pseudotopology is a
topology.

Proof. If ξ is a compact pseudotopology and Tξ is Hausdorff with ξ ≥ Tξ,
then ξ = Tξ by Proposition 41.

9.3. Diagonality. A convergence ξ on X is diagonal provided that if x0 ∈
limξ F and if x ∈ limξ G(x) for every x ∈ X, then x0 ∈ limξ G(F). A
convergence ξ on X is pretopologically diagonal if x0 ∈ limξ F , then x0 ∈
limξ Vξ(F).

Example 43. The pretopology π of Example 16 is not diagonal; its topol-
ogization Tπ is diagonal. Notice that

∫
(n)(xn,k)k is N ◦Tπ(x∞) (the free part

of the neighborhood filter of x∞).

Proposition 44. A pretopology is a topology if and only if it is diagonal.

Proof. By Example 40 each topology is a diagonal pretopology. To prove the
converse implication it is enough to show that if π is a diagonal pretopology,
then adh2

π A ⊂ adhπ A because then clπ A ⊂ adhπ A (for every A). Indeed,
if x0 ∈ adh2

π A then there is a filter F on adhπ A with x0 ∈ limπ F . On the
other hand, for each x ∈ adhπ A there is a filter G(x) on A with limπ G(x). Of
course, A ∈ G(F), and by diagonality x0 ∈ limπ G(F), hence x0 ∈ adhπ A.

60Vθ(x) is the vicinity filter of x with respect to θ.
61Like topologies.
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9.4. Regularity. A convergence ξ on X is regular with respect to a con-
vergence θ on X (in short, θ-regular) if for every filter F ,

(33) limξ F ⊂ limξ adh\θ F .

A convergence ξ is regular if it is ξ-regular (Fischer [24]), topologically regular
if it is Tξ-regular. For each convergence ζ there exists the finest among the
regular convergences that are coarser than ζ. It is called the regularization
of ζ and is denoted by Rζ.

An element x of a convergence space ξ is called irregular if there exists a
filter F such that x ∈ limξ F\ limξ adh\ξ F .

Example 45. Let X = {x∞} ∪ {xn : n < ∞} ∪ {xn,k : n, k < ∞} be the
set of Example 16. Define the convergence ζ by xn,k ∈ limζ F whenever
F = (xn,k)•, xn ∈ limζ F whenever (xn)• ∧ (xn,k)k ⊂ F , and x∞ ∈ limζ F
provided that (x∞)• ∧

∫
(n)(xn,k)k ⊂ F . This is a pretopology, which is not

regular. Actually, the elements xn,k and xn are regular for each n, k < ∞
and x∞ is irregular. Notice that x∞ ∈ limRζ F whenever (x∞)• ∧ (xn)n ∧∫

(n)(xn,k)k ⊂ F , that is, Rζ = Tπ, where π is the convergence of Example
16.

The following proposition [14, Proposition 7.4] is the essence of classical
examples of irregular topologies.62

Proposition 46. Let ξ be a pretopology of countable character. An element
x is irregular with respect to ξ if and only if there exist a sequence (xn)n and
for every n < ω a free sequence (xn,k)k such that xn ∈ limξ(xn,k)k

x ∈ limξ

∫
(n)

(xn,k)k.

but x /∈ adhξ(xn)n.

Proof. An element x is irregular for ξ if and only if adh\ξ Vξ(x) does not
converge to x, that is, whenever there is V ∈ Vξ(x) and a decreasing filter
base (Vn) of Vξ(x) such that for every n < ω there is xn ∈ adhξ Vn\V . Hence
x /∈ adhξ(xn)n, and for each such n there exists a sequence (xn,k)k on Vn for
which xn ∈ limξ(xn,k)k. Since

∫
(n)(xn,k)k is finer than Vξ(x), it converges to

x in ξ. If (xn,k)k were not free for infinitely many n, then
∫

(n)(xn,k)k would
be coarser than a subsequence of (xn)n, which does not converge to x in
ξ. Therefore, (xn,k)k is free for almost all n, hence for all n, after having
possibly dropped a finite number of them.

62E. g., [23, Example 1.5.6]. Consider the unit interval [0, 1] in which a basic family of

closed sets consists of the closed sets for the natural topology and of { 1

n
: n < ω}. In this

topology x = 0 is irregular. Then xn =
1

n
and xn,k =

1

n
+

1

k
verify Proposition 46.
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Example 47. Consider a variant of σ of Example 45, where x∞ ∈ limσ F
provided that F is finer than the filter generated by the family

(34) {{x∞} ∪ {xn,k : n ≥ m} : m <∞}.
This is a pretopology of countable character with x∞ as a unique irregularity
point. Notice that Rσ = Rζ, where ξ is defined in Example 45. Proposition
46 implies [14] that if a point x of a Hausdorff pretopological space ξ of
countable character is irregular, then there exists a homeomorphic embedding
i of the pretopology σ in ξ such that x = i(x∞).63

In some cases, the definition of Fischer coincides with that of Grimeisen
[28][29]: ξ is θ-regular if

(35) adhξ Vθ(H) ⊂ adhξH
for every filter H.

Proposition 48. A pseudotopology ξ is θ-regular if and only if (35) holds
for every family H.

Proof. Indeed, x ∈ adhξ Vθ(H) whenever there exists an ultrafilter F#Vθ(H)
such that x ∈ limξ F . By (32) (adh\θ F)#H and by (33) x ∈ limξ(adh\θ F),
hence x ∈ adhξH.

Conversely, if (35) holds, ξ is a pseudotopology and x /∈ limξ adh\θ F ,
then by (21) x /∈ adhξH for some ultrafilter H# adh\θ F , and thus by (35)
x /∈ adhξ Vθ(H). By virtue of (32) F#Vθ(H) and thus x /∈ limξ F .

9.5. Interactions between regularity and topologicity. As we have
seen, regularity and diagonality are in some sense inverse properties. The
minimality (under some uniqueness assumptions) of compact convergences
in the complete lattice of convergences makes regularity and diagonality
coincide. A convergence is normal if for any two disjoint closed sets A0, A1

there exist disjoint open sets O0, O1 such that A0 ⊂ O0 and A1 ⊂ O1.

Theorem 49. Each compact topologically regular convergence is normal.

Proof. Suppose that a convergence on X is not normal: there exist disjoint
closed sets A0, A1 such that N (A0)#N (A1). Let U be an ultrafilter finer
than N (A0) ∨ N (A1). By compactness, there exists x ∈ limU . If x /∈ A0,
then Ac0 is an open set that contains x, hence by topological regularity there
exists U ∈ U such that clU ∩A0 = ∅, that is, U /∈ N#(A0), which yields a
contradiction. For the same reason, x ∈ A1, and thus A0 ∩A1 6= ∅ contrary
to the assumption.

63Indeed, because ξ is of countable character, x ∈ limξ

R
(n)

(xn,k)k implies that there

exists a countably based filter E such that x ∈ limξ E and E ⊂
R

(n)
(xn,k)k. Then, if

needed, we can pick a subsequence of (xn)n and for each n present in this subsequence, a
subsequence of (xn,k)k so that the filter of the type (34) restricted to these subsequences,
converges to x.
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A convergence ξ is a quasi-topology if Pξ = Tξ. By Proposition 22, this
means that adhξ is idempotent.

Theorem 50. Each Hausdorff regular compact convergence is a quasi-topology.

Proof. Let x ∈ adh2A. By definition, there exists an ultrafilter U such that
{x} = limU (by Hausdorffness) and U# adhA, hence V(U)#A by virtue of
(32). Therefore there is an ultrafilter W on A such that W#V(U), equiva-
lently U# adh\W. Therefore, by regularity and by compactness,

{x} = limU ⊃ lim adh\W = limW 6= ∅,

which proves that x ∈ adhA.

Every regular quasi-topology is topologically regular. Indeed, the regu-
larity of a convergence ξ is defined with the aid of set adherence adhξ, which
depends only on Pξ; if ξ is a quasi-topology, Pξ = Tξ, thus the regularity
of ξ amounts to the topological regularity of ξ. Therefore by Theorems 50
and 49, each Hausdorff regular compact convergence is normal, and in view
of Proposition 42, we get [33][35][25]

Corollary 51. Each Hausdorff regular compact pseudotopology is a topol-
ogy.

Unlike for topologies, a compact Hausdorff convergence need not be regu-
lar, because there exist non topological compact Hausdorff pseudotopologies
(see e.g., the Kuratowski convergence in Subsection 15.3 and Proposition
93).

Diagonality and regularity are antithetic properties. Therefore, in case of
Hausdorff compact pseudotopologies, each of them entails the other. This
is due to the minimality of Hausdorff compact pseudotopologies in the class
of Hausdorff pseudotopologies. Hence, the following extension of a classical
result can be considered as a dual of Corollary 51.

Theorem 52. Each Hausdorff pretopologically diagonal compact pseudo-
topology is regular.

Proof. If not, then there is x and a filter F such that x ∈ limξ F\ limξ adh\ξ F .
Because ξ is Hausdorff, {x} = limξW for every W ∈ βF , so that adhξ F =
{x}. Let U be an ultrafilter such that U# adh\ξ F and x /∈ limξ U . Conse-
quently, Vξ(U)#F . As ξ is compact, there is y ∈ limξ U , thus y ∈ limξ Vξ(U),
because ξ is pretopologically diagonal, hence y ∈ adhξ F . Therefore x = y,
which is a contradiction.

By virtue of Corollary 51, under the hypotheses of Theorem 52, the re-
sulting convergence is also topological.
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10. Filter-determined convergences

Let H be a class of filters. A convergence ξ is said to be H-based if
x ∈ limξ F implies the existence of a filter H ∈ H such that x ∈ limξH and
H ⊂ F .

Example 53. If H is the class of sequential filters, then H-based conver-
gences are precisely sequentially based convergences.

Example 54. If H is the class of countably based filters, then H-based con-
vergences are convergences of countable character.

Example 55. A filter on a convergence space is said to be locally compact
if it contains a compact set. The set H(X) is that of the filters on X, which
are of the class H. If H(X) is the set of locally compact filters on X, then
H-based convergences are called locally compact.

Class H of filters H-based convergences
Sequential sequentially based

Countably based of countable character
Locally compact locally compact

11. Categories of convergence spaces

We have seen that the sets of topologies,pretopologies and pseudotopologies
on a given underlying set, is stable for arbitrary suprema, and contains the
least convergence, that is, the chaotic topology. The initial convergence
of a topology (respectively, a pretopology) is a topology (respectively, a
pretopology).

The set of sequentially based convergences on a given underlying set, is
stable for arbitrary infima, and contains the greatest convergence, that is,
the discrete topology. The final convergence of a sequentially based conver-
gence is a sequentially based convergence.

Such situations are well-known in category theory.64 At this point a use
of category theory is not only illuminating, but essential for the efficiency
of our investigation. I keep this use at a minimal level, because, on one
hand, a comfortable employment of category theory requires itself a patient
apprenticeship, and on the other, convergences form quite a simple category.
The book [1] of J. Adámek, H. Herrlich, and E. Strecker is a basic reference
in category theory.

11.1. Abstract and concrete categories. Objects and morphisms are
primitive notions. A category C consists of a class of objects and of a class

64They correspond to concretely reflective and coreflective subcategories of a topolog-
ical construct.
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of morphisms such that for every couple (ξ, τ) of objects of C, there exists
a set homC(ξ, τ) of morphisms

f : ξ → τ ,

so that for f ∈ homC(ξ, τ) and g ∈ homC(τ , θ), the composition g ◦ f ∈
homC(ξ, θ), the composition is associative, and for each object ξ, the set
homC(ξ, ξ) contains a neutral element 1ξ of the composition (called identity).

A map F from the class of morphisms of a category C to the class of
morphisms of a category D is called a functor (or, covariant functor) if

F (g ◦ f) = Fg ◦ Ff , F (1ξ) = 1Fξ
for every ξ ∈ C. Therefore each functor F induces a map on objects, denoted
also by F, to the effect that F (ξ) = F (1ξ).

Example 56. In the category of sets Set, the objects are sets, and the
morphisms are maps. More precisely, for X,Y ∈ Set, one defines the set of
morphisms homSet(X,Y ) = Y X (the set of all maps from X to Y ).

A category C is called concrete (over Set) if there exists a functor | · | :
homC(ξ, τ) → homSet(|ξ|, |τ |), which is faithful (which, in the language of
category theory, means injective). Therefore we can identify

| homC(ξ, τ)| ⊂ homSet(|ξ|, |τ |).
Consequently if C is concrete, then |ξ| is a set for every C-object ξ (the
underlying set of ξ), and for every morphism ϕ ∈ homC(ξ, τ), the image |ϕ|
is a map from the set |ξ| to the set |τ |.

Example 57. In the category of convergences C = Conv, the objects are
convergences, and the morphisms are continuous maps. For every conver-
gence ξ there is a unique set |ξ| on which the convergence is defined, and
every continuous map ϕ ∈ C(ξ, τ) defines |ϕ| : |ξ| → |τ |. On the other hand,
if f : X → Y , and ξ, τ are convergences respectively on X and Y , then there
is at most one morphism ϕ ∈ homC(ξ, τ) such that |ϕ| = f . In other words,
ϕ ∈ homC(ξ, τ) if and only if |ϕ| ∈ C(ξ, τ).

We have seen that there always exist initial and final convergences asso-
ciated with families of maps. In other words, the category of convergence
spaces always admits initial and final objects. Such categories are called
topological constructs.

The fiber of a set X of a concrete category C is {ξ ∈ C : |ξ| = X}. Each
concrete category induces a partial order on its fibers, that is, if |ξ| = |θ|
then ξ ≥ θ whenever there is ϕ ∈ homC(ξ, θ) such that |ϕ| = i, the identity
map on X. If C is a topological construct, then each fiber endowed with
this partial order constitutes a complete lattice.

In a topological construct C a map f ∈ homSet(|ξ|, |τ |) is a morphism
of C whenever fξ ≥ τ (equivalently, ξ ≥ f−τ). Let C be a topological
construct. A functor F : C→ C is concrete if |Fξ| = |ξ| for every object ξ
of C. The following is a special case of a result in [21].



AN INITIATION INTO CONVERGENCE THEORY 31

Theorem 58. A map H on the class of convergences uniquely determines
a concrete functor if and only if

|Hξ| = |ξ|,(36)

ζ ≥ ξ ⇒ Hζ ≥ Hξ,(37)

f(Hξ) ≥ H(fξ)(38)

for every ζ, ξ and every map f from |ξ|.

Proof. Let H be the restriction to objects of C of a concrete functor. If
ζ ≥ ξ, that is, if the identity map i belongs to C(ξ, τ) then i ∈ C(Hξ,Hτ),
equivalently Hξ ≥ Hτ . As f ∈ C(ξ, fξ), also f ∈ C(Hξ,H(fξ)), which
means that f(Hξ) ≥ H(fξ).

Conversely, if f ∈ C(ξ, τ) then fξ ≥ τ , hence f(Hξ) ≥ H(fξ) ≥ Hτ
by (38) and (37), hence f ∈ C(Hξ,Hτ). Therefore if ϕ ∈ homC(ξ, τ)
then Hϕ is the unique morphism in homC(Hξ,Hτ) such that |ϕ| = |Hϕ|.
If ϕ ∈ homC(ξ, τ) and ψ ∈ homC(τ , θ) then ψ ◦ ϕ ∈ homC(ξ, θ). Then
|H(ψ◦ϕ)| = |ψ◦ϕ| = |ψ|◦ |ϕ| = |Hψ|◦ |Hϕ|, thus by construction H(ψ◦ϕ) =
Hψ ◦ Hϕ. Also |H(iξ)| = |iξ| = |iHξ|, which shows that H(iξ) = iHξ.

Notice that (36),(37) and (38) are equivalent to (36),(37) and

(39) H(g−τ) ≥ g−(Hτ)

for every map f to |τ |65).

11.2. Subcategories of convergence spaces. A category D is a subcate-
gory of a category C if the objects and morphisms of D are also, respectively,
objects and morphisms of C.

We have seen that the category of convergence spaces is concrete. A
class of convergence spaces is a (concretely) reflective subcategory (of the
category of convergence spaces) if (on every fiber of | · |) it

(1) is stable for arbitrary suprema,
(2) contains the least convergence,
(3) is preserved by initial convergences.

A class of convergence spaces (with continuous maps as morphisms) is a
(concretely) coreflective subcategory (of the category of convergence spaces)
if (on every fiber of | · |) it

(1) is stable for arbitrary infima,
(2) contains the greatest convergence,
(3) is preserved by final convergences.

65Suppose (38) and let τ = fξ to get Hξ ≥ H(f−fξ) ≥ f−(H(fξ)). Apply f to both
the sides of the inequality to the effect that f(Hξ) ≥ ff−(H(fξ)) ≥ H(fξ). Conversely,
if (39) holds, then set ξ = f−τ and apply f− to obtain H(f−τ) ≥ f−f(H(f−τ)) ≥
f−H(ff−τ) ≥ f−(Hτ).
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If H stands for the objects of a (concretely) reflective subcategory, then
there exists a map H associating with each convergence ξ (on X) the finest
convergence Hξ (on X) from H, which is coarser than ξ. The map H is the
corresponding reflector on fixH = H, where fixH = {ξ : Hξ = ξ}. The
coreflector is defined analogously.

As in the sequel I will not consider non-concretely reflective and coreflec-
tive subcategories, the word concretely will be always omitted.

Therefore topologies and pretopologies are reflective subcategories of the
category of convergence spaces. The topologizer T and the pretopologizer P
are the corresponding reflectors. Similarly, pseudotopologies and paratopolo-
gies are reflective subcategories of the category of convergence spaces. The
pseudotopologizer S and the paratopologizer Pω are the corresponding re-
flectors. If W is a functor, then we say that a convergence ξ is W -regular if
it is Wξ-regular. It can be easily checked that W -regular convergences form
a reflective subcategory for every functor W .

Sequentially based convergences form a coreflective subcategory of the
category of convergence spaces. The sequential modification Seq is the cor-
responding coreflector.

Proposition 59. [10] If H is a class of filters (possibly depending on conver-
gence) that includes all the principal ultrafilters, and such that H(ξ) ⊂ H(θ)
if ξ ≥ θ and such that H ∈ H(ξ) implies that f(H) ∈ H(fξ), then the class
of H-based convergences is coreflective and

limBH ξ F =
⋃

H(ξ)3G⊂F

limξ G

is the coreflector.

Example 60. Because the class of countably based filters does not depend
on convergence, and the image of a countably based filter is countably based,
the convergences of countable character form a coreflective subcategory of
convergences. The corresponding coreflector will be denoted by First.

Example 61. If ξ ≥ θ, then each ξ-compact set is θ-compact, and thus each
locally compact filter in ξ is locally compact in θ. As the continuous image
of a compact set is compact, the continuous image of a locally compact filter
is locally compact. Therefore, by Proposition 59, the locally compact conver-
gences form a coreflective subcategory of convergences. The corresponding
coreflector will be denoted by K.

Reflectors and coreflectors are functors.

Theorem 62. [20] For every functor H, the class of all convergences ξ such
that

(40) ξ ≤ Hξ
is reflective, and

(41) Hξ ≤ ξ
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is coreflective.

Proof. As H is order-preserving, o ≤ Ho. If (40) holds for each ξ ∈ Ξ, then∨
Ξ ≤

∨
ξ∈ΞHξ, and the latter is always less than H(

∨
Ξ). Finally (40)

implies f−ξ ≤ f−(Hξ), which is less than H(f−ξ) by (39), showing that
(40) is preserved by initial convergences. This proves that the class (40) is
reflective. The coreflectivity of (41) can be proved analogously.

A category-theory concepts of initial and final density are extremely use-
ful in this quest. A class D of convergences is called initially dense in a
subcategory M (of convergences) if for every (object) τ of M there exists a
collection of maps {fι : ι ∈ I} such that

τ =
∨

ι∈I
f−ι ζι

with ζι ∈ D for each ι ∈ I. A class D of convergences is called finally dense
in a subcategory M if for every (object) ξ of M there exists a family of maps
{fι : ι ∈ I} such that

ξ =
∧

i∈I
fiτ i.

with τ ι ∈ D for each ι ∈ I.

12. Functorial inequalities

Some important classes of classical topologies can be characterized with
the aid of convergence inequalities of the type

(42) ξ ≥ JEξ,

where J is a reflector and E is a coreflector [15][10]. We shall call them
JE-convergences. By Theorem 62 , classes of JE-convergences form a core-
flective subcategory of the category of convergence spaces. Restricted to
topologies, they form a coreflective subcategory of the category of topologi-
cal spaces provided that J ≥ T .

Example 63. A topology is called sequential if each sequentially closed66 set
is closed. A topology ξ is sequential if and only if (42) holds with J = T (the
topologizer) and E = Seq (the sequential modifier). Indeed (for an arbitrary
convergence ξ) ξ ≥ T Seq ξ amounts to Tξ ≥ T Seq ξ ≥ Tξ (because T is
order-preserving and Seq ξ ≥ ξ), which means that if a set is closed for Seq ξ
then it is closed for ξ.

Example 64. A topology is called Fréchet if x ∈ clξH implies the existence
of a sequential filter E on H that converges to x in ξ. It turns out that a
topology ξ is Fréchet if and only if (42) holds with J = P (the pretopologizer)
and E = Seq (the sequential modifier). In fact, ξ ≥ P Seq ξ for a topology
ξ whenever clξH = adhξH ⊂ adhSeq ξH for every H, which means that

66A set A is sequentially closed if the limit of every sequence with terms in A, is in A.
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x ∈ clξH implies the existence of a sequential filter E on H that converges
to x in ξ. Conversely, the latter statement implies that for every filter F ,⋂

H∈F#

adhξH ⊂
⋂

H∈F#

adhSeq ξH,

which, in view of Theorem 35 (27) means that limPξ F ⊂ limP Seq ξ F , and
thus ξ ≥ Pξ ≥ P Seq ξ.

Example 65. A topology ξ is a k-topology if H ∩C is closed in ξ ∨C (the
restriction of ξ to C) for every ξ-compact set C, then H is ξ-closed. It turns
out that a topology ξ is a k-topology if and only (42) holds with J = T (the
topologizer) and E = K (compact localization), that is, ξ ≥ TKξ.

JE-convergences for various special reflectors J and coreflectors E, are
written in terms of standard classes of topologies, the definitions of which
are furnished in the footnote below.

J/E Seq First K
I identity sequentially based countable character locally compact
S pseudo∼ sequentially based bisequential locally compact
Pω para∼ strongly Fréchet strongly Fréchet strongly k′

P pre∼ Fréchet Fréchet k′

T ∼ sequential sequential k

In the second column of the table, the sign ∼ replaces topologizer. See
[10] for a more complete table.67

13. Quotient maps

The objects of every reflective subcategory of convergence spaces can
be represented as fix J (the collection of fixed points of a reflector J). If
f : X → Y is a map, and ξ ∈ Ξ is a convergence on X, then there exists
on Y the finest convergence from fix J , for which f is continuous.68 This
convergence is called the J-quotient of ξ by f . Actually, the J-quotient of ξ

67A topology ξ is called strongly Fréchet if for every descending sequence (Hn)n of
sets such that x ∈

T
n<∞ clξHn implies the existence of a sequence (xn)n such that

x ∈ limξ(xn)n and xn ∈ Hn for each n <∞. This is equivalent to the condition adhξH ⊂
adhFirst ξH for each countably based filter H.

A topology ξ is called bisequential if adhξH ⊂ adhFirst ξH for every filter H.
A topology ξ is called a k′-topology if x ∈ clξH implies that there is compact set C

such that x ∈ clξ(H ∩ C).
A topology ξ is called a strongly k′-topology if x ∈

T
n<∞ clξHn for a descending

sequence (Hn)n of sets, then there exists a compact set C such that x ∈ clξ(Hn ∩ C) for
each n <∞.

68Indeed, the set Ξf of all the Ξ-convergences on Y for which f is continuous is non-
empty, because it contains the chaotic topology. As the supremum of Ξf belongs to Ξf ,
there exists the finest Ξ-convergence for which f is continuous.
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by f is equal to J(fξ). Therefore, we say that a map f from a convergence
space (X, ξ) to a convergence space (Y, τ) is a J-quotient if

(43) τ ≥ J(fξ).

It turns out that many types of classical maps in topology, like quotient
maps, hereditarily quotient maps, countably biquotient maps, biquotient
maps, almost open maps are J-quotient maps with respect to a reflective
subcategory fixJ of convergence spaces. You will find classical definitions of
quotient, hereditarily quotient and biquotient maps in the examples below.

Example 66. A map between topological spaces f : X → Y is quotient if a
subset F of Y is closed whenever f−(F ) is closed.

Example 67. A map between topological spaces f : X → Y is hereditarily
quotient if y ∈ clB implies that cl f−(B) ∩ f−(y) 6= ∅ for each subset B of
Y .

Example 68. A map between topological spaces f : X → Y is biquotient if
y ∈ adhH implies that adh f−(H) ∩ f−(y) 6= ∅ for each filter H on Y .

Theorem 69. [10] Let J be a class of filters and let J = AJ be the reflector
on the subcategory of convergences, which are adherence determined by J.
Then a map f : (X, ξ)→ (Y, τ) is a J-quotient if and only if for every filter
J ,

(44) J ∈ J, y ∈ adhτ J =⇒ f−(y) ∩ adhξ f−(J ) 6= ∅.

Proof. Notice that (44) amounts to

adhτ J ⊂ f(adhξ f−(J ))

for every filter J ∈ J, and as adhfξ J = f(adhξ f−(J )), we conclude that

limτ F ⊂
⋂

J3J#F
adhτ J ⊂

⋂
J3J#F

adhfξ J = limAJ fξ F ,

which is equivalent to τ ≥ J(fξ).

The following observation is an initial step in the quest for preservation
of various classes of spaces by variants of quotient maps.

Proposition 70. [10] Let J be a reflector and E a coreflector. Then ξ is a
JE-convergence if and only if the identity i : (X,Eξ)→ (X, ξ) is J-quotient.

Proof. By definition, i is J-quotient from Eξ to ξ whenever ξ ≥ J(i(Eξ)) =
JEξ, that is, whenever ξ is a JE-convergence.

Theorem 71. [10] The image of a JE-convergence by a continuous J-
quotient is a JE-convergence.

Proof. If ξ ≥ JEξ and τ ≥ J(fξ) then fξ ≥ f(JEξ) ≥ JE(fξ) by (38).
Therefore τ ≥ J(fξ) ≥ JE(fξ) ≥ JEτ because of the continuity.
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Theorem 71 is illustrated below for various fundamental variants of quo-
tient maps (and which are quotient with respect to reflective classes of con-
vergence spaces) and for most known local properties of topologies.69

J Seq First K
almost open I sequentially based countable character locally compact

biquotient S sequentially based bisequential locally compact

countably biquotient Pω Fréchet strongly Fréchet strongly k′

hereditarily quotient P strongly Fréchet Fréchet k′

quotient T sequential sequential k

The reflector with respect to which the quotient is considered is in the
second column, the classical name of the type of quotient is in the first
column. The rows show which properties are preserved by which types of
quotient maps.

If f0 : X0 → Y0 and f1 : X1 → Y1 then the product map f0 × f1 :
X0 ×X1 → Y0 × Y1 is defined by

(f0 × f1)(x0, x1) = (f0(x0), f1(x1)).

The problem when the product of two quotient map is quotient has been
studied by many authors. Special cases of it (when one of the maps is the
identity) are answered by70

Theorem 72 (Whitehead-Michael). A regular (Hausdorff) topological space
is locally compact if and only if the product of its identity map with every
quotient map is quotient.

Theorem 73 (Michael). A regular (Hausdorff) topological space is locally
countably compact if and only if the product of its identity map with every
quotient map from a sequential topological space is quotient.

It turns out that there exists a simple convergence-theoretic scheme, which
enables one to answer this question. The definition of J-quotient map (43)
can be extended as follows. If M is a functor, then we say that a map f from
a convergence space (X, ξ) to a convergence space (Y, τ) is an M -quotient if
τ ≥M(fξ).

Remark 74. If M = JE where J is a reflector and E a coreflector, then a
map f , which is a JE-quotient from ξ to τ , is J-quotient from JEξ to τ .71

We denote by iX : X → X the identity map on X.

Proposition 75. [19] Let M be a functor and L a reflector. For every
convergence τ

(45) ξ ×Mτ ≥ L(ξ × τ)

69A more extensive table can be found in [10].
70[23, Theorem 3.3.17],[37, Theorem 2.1 and 4.1]
71In fact, by (39) τ ≥ JJE(fξ) ≥ J(f(JEξ)).
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if and only if i|ξ| × f is an L-quotient for every M -quotient f.

Proof. Let f : τ0 → τ1 be an M -quotient, that is, τ1 ≥ M(fτ0). Then
ξ× τ1 ≥ ξ×M(fτ0) ≥ L(ξ×fτ0) = L(i×f)(ξ× τ0). Conversely, if f = i|τ |,
then Mτ = M(i|τ |τ) so that i|τ | is an M -quotient. By (45) i|ξ| × i|τ | is an
L-quotient: ξ ×Mτ ≥ L(ξ × τ).

In Section 17 we will see that Theorems 72 and 73 are special cases of
Proposition 75.

14. Power convergences

One of the principal reasons for the occurrence of non-topological conver-
gences was the fact that in general there exists no coarsest topology on the
space of continuous maps (from one topological space to another) making
the evaluation map continuous. As we shall see, closed subsets of a topolog-
ical space can be identified with continuous maps (valued in the Sierpiński
topology). Therefore, in general, there is no coarsest topology on a hyper-
space (space of closed subsets of a topological space) making the natural
evaluation continuous. These facts were at the origin of the introduction of
pseudotopologies by Gustave Choquet in [8] in 1947-1948.

The space of continuous maps from a convergence ξ to a convergence σ
is denoted by C(ξ, σ). If M is a functor, then

(46) C(ξ, σ) ⊂ C(Mξ,Mσ)

by virtue of (39) (or equivalently of (38)).

Lemma 76. If J is a reflector, and ζ and ξ are convergences, then

ζ ≥ Jξ ⇔ ∀σ∈fix J C(ξ, σ) ⊂ C(ζ, σ).

Proof. Let ζ, ξ be convergences on X. The inequality ζ ≥ Jξ implies
C(Jξ, σ) ⊂ C(ζ, σ) for every convergence σ, and if σ = Jσ then C(ξ, σ) ⊂
C(Jξ, σ) by (46). Conversely, suppose that C(ξ, σ) ⊂ C(ζ, σ) for each
σ ∈ fix J , in particular C(ξ, Jξ) ⊂ C(ζ, Jξ). As ξ ≥ Jξ, the identity i
on X belongs to C(ξ, Jξ), hence i ∈ C(ζ, Jξ), that is, ζ ≥ Jξ.

Proposition 77. Let D be initially dense in fix J . If C(ξ, σ) ⊂ C(ζ, σ) for
each σ ∈ D, then this holds for each σ ∈ fix J .

Proof. Let f ∈ C(ξ, σ) for some σ ∈ fix J . By initial density there exists a
class of maps {gι : ι ∈ I} such that σ =

∨
ι∈I g

−
ι ρι with ρι ∈ D for each ι ∈ I.

Therefore fξ ≥ g−ι ρι for each ι ∈ I, that is, gι ◦ f ∈ C(ξ, ρι) ⊂ C(ζ, ρι), or
equivalently fζ ≥

∨
ι∈I g

−
ι ρι = σ, which means that f ∈ C(ζ, σ).

In Subsection 4.5 the power convergence (or the continuous convergence)
[ξ, σ] (of ξ with respect to σ) was defined as the coarsest among the conver-
gences τ on C(ξ, σ), for which the evaluation e is continuous from ξ × τ to
σ, that is, the coarsest among the convergences θ for which

(47) ξ × θ ≥ e−σ,
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where e−σ is the initial convergence of σ by e. The convergence σ in the
definition above is called the coupling convergence.

The exponential map t

(48) (tf)(y)(x) = f(x, y)

is a bijection of the set ZX×Y (of all maps from X × Y to Z) onto the set
(ZX)Y (of all the maps from Y to the set of maps ZX). Its inverse associates
by (48) with each g ∈ (ZX)Y an element ĝ of ZX×Y . If now ξ, τ and σ are
convergences on X,Y and Z respectively, then an immediate consequence
of the definition of power convergence is that

(49) C(ξ × τ , σ)↔ C(τ , [ξ, σ]),

where ↔ denotes the restriction of that bijection. Moreover,

Theorem 78. For convergences ξ, τ and σ, the exponential is a homeomor-
phism between the power convergences:

(50) [τ , [ξ, σ]] ≈ [ξ × τ , σ].

Proof. A map h ∈ ZX×Y belongs to lim[ξ×τ ,σ]H if and only if for every
x ∈ limξ F and for every y ∈ limτ G, we have h(x, y) ∈ limσ〈F × G,H〉. As
〈F ×G,H〉 = 〈F , 〈G,tH〉〉, the preceding formula is equivalent to th(y)(x) ∈
limσ〈F , 〈G,tH〉〉, that is, to th(y) ∈ lim[ξ,σ]〈G,tH〉, hence equivalent to th ∈
lim[τ ,[ξ,σ]]

tH.

If f : X → Y and Z is a fixed set, then f∗ : ZY → ZX is defined by
f∗(h) = h ◦ f , that is,

〈x, f∗(h)〉 = 〈f(x), h〉

for every x ∈ X and h : Y → Z. If f ∈ C(ξ, τ) then f∗(C(τ , σ)) ⊂ C(ξ, σ).72

Therefore for each f ∈ C(ξ, τ) we will see f∗ as restricted to C(τ , σ), that
is,

f∗ : C(τ , σ)→ C(ξ, σ).

Theorem 79. If f ∈ C(ξ, τ), then f∗ is continuous from [τ , σ] to [ξ, σ].

Proof. Let h ∈ lim[τ ,σ]H. In order to prove that h ∈ lim(f∗)−[ξ,σ]H, or
equivalently, f∗(h) ∈ lim[ξ,σ] f

∗(H), one must establish that 〈x, f∗(h)〉 ∈
limσ〈F , f∗(H)〉, that is,

(51) 〈f(x), h〉 ∈ limσ〈f(F),H〉

for every x ∈ |ξ|, and each filter F such that x ∈ limσ F . Because f is
continuous f(x) ∈ limτ f(F), and since by assumption, h ∈ lim[τ ,σ]H, (51)
holds.

72In fact, if h ∈ C(τ , σ) then f∗(h) = h ◦ f ∈ C(ξ, σ).
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In particular, if ξ and τ are convergences on a set X such that ξ ≥ τ , then
the identity map i belongs to C(ξ, τ), hence i∗ maps C(τ , σ) into C(ξ, σ) for
every convergence σ. Therefore we consider now

i∗ : C(τ , σ)→ C(ξ, σ).

Because i is the identity, i∗ is the injection of C(τ , σ) into C(ξ, σ). By
Theorem 79, i∗ is continuous from [τ , σ] to [ξ, σ]. Hence by Theorem 79,
i∗∗ = (i∗)∗ maps C([ξ, σ], σ) into C([τ , σ], σ) and is continuous from [[ξ, σ], σ]
to [[τ , σ], σ]. If A ⊂ B and iA,B : A→ B is the injection and Z is a set, then
i∗A,B : ZB → ZA is the restriction. Indeed, if h : B → Z, then by definition,
i∗A,B(h) = h ◦ iA,B. In particular, i∗∗ is the restriction, wich associates with
each map h : C(ξ, σ)→ |σ| the map h ◦ i∗ : C(τ , σ)→ |σ|.

Lemma 80. If ξ is a convergence on X and σ is a convergence on Z, then

j(x)(h) = 〈x, h〉

defines an embedding j : X → C([ξ, σ], σ), which is continuous from ξ to
[[ξ, σ], σ].

Proof. Indeed, if h ∈ lim[ξ,σ]H and x ∈ limξ F , then by definition, 〈x, h〉 ∈
limσ〈F ,H〉 = limσ j(F)(H). In the particular case F = (x)• this yields
j(x)(h) = 〈x, h〉 ∈ limσ〈(x)•,H〉 = limσ j(x)(H), which shows that j(x) ∈
C([ξ, σ], σ) for every x ∈ X.

Corollary 81. For every ξ and σ, one has ξ ≥ j−[[ξ, σ], σ].

It is immediate that if ρ ≥ σ, then C(ξ, ρ) ⊂ C(ξ, σ) and the injection
is continuous from [ξ, ρ] to [ξ, σ], in symbols, [ξ, ρ] B [ξ, σ]. Indeed, h ∈
lim[ξ,ρ]H whenever x ∈ limξ F implies h(x) ∈ limρ〈F ,H〉, hence h(x) ∈
limσ〈F ,H〉, that is, h ∈ lim[ξ,σ]H. In this way, we have defined an order B
on C(ξ, o), where o stands for the indiscrete topology.73

Proposition 82. For each ξ and a set Σ of convergences on a common
underlying set,

[ξ,
∨

Σ] =
∨C

σ∈Σ
[ξ, σ].

Proof. Let h ∈ lim[ξ,
W

Σ]H. As we have seen h ∈ C(ξ, σ) and H can be
extended to a filter on C(ξ, σ) for each σ ∈ Σ. By the definition of power
convergence, x ∈ limξ F implies h(x) ∈ limW

Σ〈F ,H〉 =
⋂
σ∈Σ limσ〈F ,H〉,

hence h ∈ lim[ξ,σ]H for each σ ∈ Σ, that is, h ∈ limWC
σ∈Σ[ξ,σ]H.

If g : W → Z, then the map g∗ : WX → ZX is defined by g∗(h) = g ◦ h.
If ρ is a convergence on W and σ is a convergence on Z, and g ∈ C(ρ, σ),
then (the restriction of) g∗ maps C(ξ, ρ) to C(ξ, σ) and is continuous from
[ξ, ρ]→ [ξ, σ]. In fact,

73The open sets of the indiscrete topology on Z are ∅ and Z.
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Proposition 83.
[ξ, g−σ] = g−∗ [ξ, σ].

Proof. Let h ∈ lim[ξ,g−σ]H, that is, x ∈ limξ F implies that h(x) ∈ limg−σ〈F ,H〉,
that is, by the definition of initial convergence, g(h(x)) ∈ limσ g(〈F ,H〉).
Because g(〈F ,H〉) = 〈F , g∗(H)〉, we conclude that this is equivalent to
g∗(h)(x) ∈ limσ〈F , g∗(H)〉, which means that g∗(h) ∈ lim[ξ,σ] g∗(H), that
is, h ∈ limg−∗ [ξ,σ]H.

Corollary 84. If gi : Z → Zi is a surjection and σi is a convergence on Zi
for each i ∈ I, then

[ξ,
∨

i∈I
g−i σi] =

∨C

i∈I
(gi)−∗ [ξ, σi].

14.1. Topologicity and other properties of power convergences. As
was said repeatedly, a power convergence of a topology with respect to
another topology need not be a topology.74 Now we will see a sufficient and
necessary condition for a power convergence to belong to a given reflective
class. If J is a reflector, then J-convergences are those convergences τ for
which Jτ ≥ τ .

Proposition 85. Let J be a reflector. Then J [ξ, σ] ≥ [ξ, σ] for each con-
vergence σ = Jσ if and only if ξ × Jτ ≥ J(ξ × τ) for each convergence
τ .75

Proof. Let J fulfill the condition and let σ ≤ Jσ. By definition, [ξ, σ] is the
coarsest convergence on C(ξ, σ) for which

ξ × [ξ, σ] ≥ e−σ.

On applying J to the inequality above, we get by (39),

ξ × J [ξ, σ] ≥ J(ξ × [ξ, σ]) ≥ J(e−σ) ≥ e−(Jσ) = e−σ,

thus J [ξ, σ] ≥ [ξ, σ], and since J is contractive, [ξ, σ] is a J-convergence.
Conversely, suppose J [ξ, σ] ≥ [ξ, σ]. By (76) it is enough to show that
C(ξ × τ , σ) ⊂ C(ξ × Jτ, σ). If f ∈ C(ξ × τ , σ) then by Theorem 78
tf ∈ C(τ , [τ , σ]) ⊂ C(Jτ, J [τ , σ]) by (46). By Proposition 79, (tf)∗ ∈
C([J [ξ, σ], σ], [Jτ, σ]). On the other hand, ξ ≥ i−([J [ξ, σ], σ]), which means
that the injection i from |ξ| to |C(C(ξ, σ), σ)| belongs to C(ξ, [J [ξ, σ], σ]).
Therefore the composition (tf)∗ ◦ i ∈ C(ξ, [Jτ, σ]), which means that f =
̂(tf)∗ ◦ i ∈ C(ξ × Jξ, σ).

We know already a reflector that commutes with (arbitrary) products,
thus a fortiori fulfills the assumption of Proposition 85.

74A characterization of those underlying Hausdorff regular topologies for which the
power convergence is topological will appear through Theorem 89 and Corollary 109.

75Notice that nothing was assumed about the underlying convergence ξ.
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Corollary 86. If a coupling convergence σ is a pseudotopology (a fortiori,
a topology), then the power convergence [ξ, σ] is a pseudotopology for each
convergence ξ.

A reflective class fix J of convergence spaces is said to be exponential if
J [ξ, σ] ≥ [ξ, σ] for every Jσ ≥ σ. In other words, a class is exponential if
the power does not lead out of this class. We conclude that the class of
pseudotopologies is exponential, but that of topologies is not.

15. Hyperconvergences

15.1. Sierpiński topology. I have mentioned that if the coupling conve-
gence is the Sierpiński topology, then the resulting power convergence is a
hyperspace convergence. Let us investigate in detail this important special
case of power convergences.

In spite of its great simplicity, the Sierpiński topology is a fundamental
(non-Hausdorff) topology. It is often denoted by $ and is defined on a two-
element set, say, {0, 1} by its open sets {∅, {1}, {0, 1}}. This topology is
not even T1 (the singleton {1} is not closed), but it is T0. The Sierpiński
topology is compact; even more: every filter converges with respect to $.

Observe that a subset A of a topological space (X, τ) is closed if and only
if the indicator function of A is continuous from τ to $.76 Therefore we can
identify the set of all τ -closed subsets of X with C(τ , $).

The Sierpiński topology plays an exceptional role among other topologies:
it is initially dense in the category of all topologies. This means that every
topology τ is the initial convergence with respect to maps valued in the
Sierpiński topological space. Namely,

(52) τ =
∨

f∈C(τ ,$)

f−$,

(where f−$ denotes the initial convergence of $ by f).

15.2. Upper Kuratowski convergence. If $ is used as a coupling topol-
ogy, then the coupling map goes from a subset of X × 2X to {0, 1} and is
defined by

〈x,A〉 =
{

0 if x ∈ A
1 if x /∈ A .

A filter F on the set C(τ , $) (of closed subsets of a topological space
(X, τ)) converges to A0 ∈ C(τ , $) in the upper Kuratowski convergence if
for every x0 /∈ A0 there exist a neighborhood V of x0 and F ∈ F such that
V ∩A = ∅ for each A ∈ F , in other words,

(53)
⋂
F∈F

clτ
⋃
A∈F

A ⊂ A0.

76The indicator function 〈·, A〉 of A is defined by 〈x,A〉 = 0 if x ∈ A and 〈x,A〉 = 1 if
x /∈ A.



42 SZYMON DOLECKI

The concept can be naturally extended to the case of an arbitrary under-
lying convergence τ . To this end, I will use the notion of reduced filter. If
F is a filter on (a subset of) 2X then we denote by |F| the reduced filter of
F , that is, the filter on X generated by {

⋃
A∈F A : F ∈ F}. Let F be a set

of filters on (a subset of) 2X . Then

(54) |
⋂
F∈F
F| =

⋂
F∈F
|F|.

Indeed,
⋂
F∈FF consists of the sets of the form

⋃
F∈F FF (where FF ∈ F

for each F ∈ F), hence its reduced filter is generated by the unions of the
elements of

⋃
F∈F FF . The filter

⋂
F∈F |F| is generated by the sets of the

form
⋃
F∈F

⋃
A∈FF A. Therefore the filters in (54) are equal.

We say that F upper Kuratowski converges to A0 with respect to a con-
vergence τ if

(55) adhτ |F| ⊂ A0.

The formula above means that x0 /∈ A0 and x0 ∈ limτ G imply that there
exist F ∈ F and G ∈ G such that

⋃
A∈F A ∩ G = ∅. In the particular

case where τ is a topology the condition holds if and only if it holds for
G = Nτ (x0). Therefore, if τ is a topology then (55) is equivalent to (53).

Proposition 87. A filter F upper Kuratowski converges to A0 with respect
to τ if and only if A0 ∈ lim[τ ,$]F .

Proof. Let τ be a convergence on X. By the definition of power convergence,
A0 ∈ lim[τ ,$]F if and only if 〈x0, A0〉 ∈ lim$〈G,F〉 for every x0 ∈ X and
every filter G on X such that x0 ∈ limτ G. The filter 〈G,F〉 on {0, 1} is
generated by

{{〈x,A〉 : x ∈ G,A ∈ F} : G ∈ G, F ∈ F}.
Because the only neighborhood of 0 in $ is the whole space {0, 1}, the con-

vergence condition is restrictive only at 1. Therefore 〈x0, A0〉 ∈ lim$〈G,F〉
if and only if 〈x0, A0〉 = 1 (equivalently, x0 /∈ A0) whenever there is G ∈ G
and F ∈ F such that 〈x,A〉 = 1 (equivalently, x /∈ A) for every x ∈ G
and A ∈ F , in other words, whenever G ∩

⋃
A∈F A = ∅, which amounts to

adhτ |F| ⊂ A0.

We see that the upper Kuratowski convergence is a pseudotopology, be-
cause it is a power convergence with respect to a topological (hence, a fortiori
pseudotopological) coupling convergence $. We know however no reason that
it be a topology.

The cocompact topology on C(τ , $) can be defined by a base of open sets
consisting of

{A ∈ C(τ , $) : A ∩K = ∅},
where K is a τ -compact set.

Proposition 88. If τ is a Hausdorff topology, then [τ , $] is finer than the
cocompact topology with respect to τ .
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Proof. If A0 ∈ lim[τ ,$]F , and K is a compact set disjoint from A0, then
for each x ∈ K there exist Fx ∈ F and a neighborhood Vx of x such that
Vx ∩

⋃
A∈Fx A = ∅. As K is compact there are finitely many x in K, say

x1, x2, . . . , xm, such that K ⊂
⋃

1≤j≤m Vxj . Then F =
⋂

1≤j≤m Fxj ∈ F and
K ∩

⋃
A∈F A = ∅.

In fact, by a theorem of Choquet [8],

Theorem 89. Let τ be a (Hausdorff) regular topology. Then the upper
Kuratowski convergence [τ , $] is a topology if and only if it coincides with
the cocompact topology if and only if τ is locally compact.

Proof. First let us show that if τ is a locally compact topology, then the
cocompact topology with respect to τ coincides with [τ , $]. Let F converge
to A0 in the cocompact topology and let x /∈ A0. As A0 is τ -closed and τ
is locally compact there exists a compact neighborhood K of x such that
K∩A0 = ∅ , hence by assumption, there is F ∈ F such that K∩

⋃
A∈F A =

∅, thus A0 ∈ lim[τ ,$]F .
If τ is not locally compact, then there is an element x0, for every closed

neighborhood W of which there exists an ultrafilter UW such that limτ UW =
∅. On the other hand, each element of

⋂
W∈Nτ (x) UW =

⋂
clτ W=W∈Nτ (x) UW

is generated by the family consisting of
⋃
W∈Nτ (x) UW , where UW ∈ UW are

all the possible selections. Therefore (
⋂
W∈Nτ (x) UW )#Nτ (x), hence x ∈

adhτ (
⋂
W∈Nτ (x) UW ).

Because all the singletons {x} are closed, the family

{{{x} : x ∈ U} : U ∈ UW }
generates a filter ZW on C(τ , $), the set of τ -closed sets. It is immediate
that UW is the reduced filter of ZW , therefore ∅ ∈ lim[τ ,$]ZW by virtue of
(55) and Proposition 87. We will see that ∅ /∈ lim[τ ,$](

⋂
W∈Nτ (x)ZW ), and

thus [τ , $] is not even a pretopology.
Indeed, by (54) the reduced filter of

⋂
W∈ N τ (x)ZW is

⋂
W∈Nτ (x) UW , and

since adhτ (
⋂
W∈Nτ (x) UW ) 6= ∅, we conclude that∅ /∈ lim[τ ,$](

⋂
W∈Nτ (x)ZW ).

I shall characterize vicinities and open sets of [ξ, $] in terms of ξ.77

A family A of closed subsets of a topological space is stable if B ∈ A for
every A ∈ A and each closed subset B of A. The vicinity filters of [ξ, $]
admit bases of ξ-stable filters.

Theorem 90. A family A is stable for ξ-closed subsets and a vicinity of A0

with respect to [ξ, $] if and only if Ac = Oξ(Ac) and is ξ-compact at Ac0.

Proof. A family A is a vicinity of A0 for [ξ, $] if and only if A ∈ F for every
filter on C(ξ, $) with A0 ∈ lim[ξ,$]F , equivalently if for each filter H on
|ξ| such that adhξH ⊂ A0 there exists clξH = H ∈ H such that H ∈ A.

77In order not to complicate the presentation, we shall present a special case of [20,
Theorem 16.2, Corollary 16.3] where the underlying space is a topology.
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Equivalently, H#Ac implies that adhξH∩Ac0 6= ∅, which means that Ac is
ξ-compact at Ac0.

Corollary 91. [17, Theorem 3.1] A family A is open for [ξ, $] if and only
if Ac = Oξ(Ac) and is ξ-compact.

Remark 92. The upper Kuratowski convergence is hypercompact, that is,
every filter converges.

15.3. Kuratowski convergence. A filter F on C(ξ, $) lower Kuratowski
converges to A0 if for every filter G such that limξ G ∩A0 6= ∅ and for each
G ∈ G, there exists F ∈ F such that A∩G 6= ∅ for each A ∈ F [18, p. 306]
(equivalently, for each G ∈ G each H ∈ F# there exists A ∈ H such that
A ∩ G 6= ∅)78. Therefore F on C(ξ, $) lower Kuratowski converges to A0

whenever
A0 ⊂ adhξ |F#|,

where |F#| is the reduced grill. If ξ is a topology, then it is enough, in the
definition above, to take for every x ∈ A0 the coarsest filter G = Nξ(x) that
converges to x. Then the condition becomes: for every x ∈ A0 and each
neighborhood V of x there exists F ∈ F such that V ∩ A 6= ∅ for each
A ∈ F . Therefore if ξ is a topology, then the associated lower Kuratowski
convergence is a topology.

A filter F on C(ξ, $) Kuratowski converges to A0 if it lower and upper
Kuratowski converges to A0, that is whenever adhξ |F| ⊂ A0 ⊂ adhξ |F#|.

If ξ is a topology, then the greatest element of C(ξ, $), to which a filter
F converges in the lower Kuratowski topology, is79

Liξ F =
⋂

H∈F#

clξ(
⋃
A∈H

A).

As the least element to which F upper Kuratowski converges is

Lsξ F =
⋂
F∈F

clξ(
⋃
A∈F

A),

and Liξ F ⊂ Lsξ F for every filter F , a filter F Kuratowski converges to A0

if and only if Lsξ F ⊂ A0 ⊂ Liξ F . We infer that (without any assumption
on the underlying topology)

If the underlying convergence is a topology, then the Kuratowski conver-
gence is a Hausdorff pseudotopology.

Proposition 93. If the underlying convergence is a topology, then the Ku-
ratowski convergence is compact.

Proof. For every ultrafilter U (on C(ξ, $)), U# = U , hence Lsξ U = Liξ U .80

78This equivalence follows for [27].
79(see [17])
80If Lsξ U = Liξ U = ∅ then ∅ is the limit of the Kuratowski convergence with respect

to ξ.
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If the underlying convergence is a topology, then the Kuratowski con-
vergence is a topology if and only if the upper Kuratowski convergence is
a topology.81 Consequently, if the underlying convergence ξ is a Hausdorff
regular topology, then by Theorem 89 and Corollary 51, the Kuratowski is
regular if and only ξ is locally compact.

16. Exponential hull of topologies

16.1. Bidual convergences. Recall that if ξ, σ are convergences, then
[ξ, σ] is a convergence on C(ξ, σ) and [[ξ, σ], σ] is a convergence on C([ξ, σ], σ)
such that the injection j of |ξ| into C([ξ, σ], σ) is continuous from ξ to
[[ξ, σ], σ]. Let

Epiσ ξ = j−[[ξ, σ], σ].

It follows from Corollary 56 that82

(56) ξ ≥ Epiσ ξ.

A convergence ξ is called bidual with respect to a convergence σ whenever
ξ = Epiσ ξ.

Proposition 94. Let f : X → Y and let ξ be a convergence on X. Then

f(Epiσ ξ) ≥ Epiσ fξ.

Proof. Let y ∈ limf(Epiσ ξ) G, hence there exist x and F such that x ∈
limEpiσ ξ F , f(x) = y and f(F) = G. The first equality means that 〈x, k〉 ∈
limσ〈F ,K〉 for every k ∈ lim[ξ,σ]K. To show that y ∈ limEpiσ fξ G consider
h ∈ C(fξ, σ) and a filter H on C(fξ, σ) such that h ∈ lim[fξ,σ]H. It follows
that f∗(h) ∈ lim[ξ,σ] f

∗(H), hence

〈y, h〉 = 〈f(x), h〉 = 〈x, f∗(h)〉 ∈ limσ〈F , f∗(H)〉 = limσ〈f(F),H〉 = limσ〈G,H〉.

Proposition 95. If ξ ≥ θ then Epiσ ξ ≥ Epiσ θ.

Proof. Let x ∈ limEpiσ ξ F , that is, h(x) ∈ limσ〈F ,H〉 for every h ∈ C(ξ, σ)
and each filter H on C(ξ, σ) such that h ∈ lim[ξ,σ]H. Because C(θ, σ) ⊂
C(ξ, σ) and the injection is continuous from [θ, σ] to [ξ, σ], if h ∈ lim[θ,σ]H
then h ∈ lim[ξ,σ]H and thus h(x) ∈ limσ〈F ,H〉, which proves that x ∈
limEpiσ θ F .

It follows from Propositions 94 and 95 that Epiσ is a (concrete) functor.

Proposition 96.
[ξ, σ] = [j−[[ξ, σ], σ], σ].

81as the supremum (in a lattice of convergences) of two topologies.
82Here is a direct proof. Let x ∈ limξ F and let h ∈ lim[ξ,σ]H. By definition of power

convergence, this means that h(x) ∈ limσ〈F ,H〉. Hence x ∈ lim[[ξ,σ],σ] F .
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Proof. Let h ∈ lim[ξ,σ]H. This means that x ∈ limξ F implies h(x) ∈
limσ〈F ,H〉. In order to prove that h ∈ lim[j−[[ξ,σ],σ],σ]H, we need to show
that h(x) ∈ limσ〈F ,H〉 for filter F on X and every x ∈ lim[[ξ,σ],σ]F . The
latter means that g(x) ∈ limσ〈F ,G〉 for every g ∈ C(ξ, σ) and each filter
G on C(ξ, σ) such that g ∈ lim[ξ,σ] G. In particular, this holds for g = h
and G = H. In particular, with F = (x)• we conclude that C(ξ, σ) ⊂
C(j−[[ξ, σ], σ], σ).

Conversely, by (56) the injection of C(Epiσ ξ, σ) into C(ξ, σ) is continuous
from [j−[[ξ, σ], σ], σ] to [ξ, σ].

Therefore, Epiσ is idempotent. We have already noticed that Epiσ is a
concrete functor. Therefore, on recalling (56), we conclude that

Theorem 97. For every convergence σ, the map Epiσ is a concrete reflector.

For a given functor L, define

EpiL ξ =
∨

σ=Lσ
Epiσ ξ.

A convergence ξ is bidual with respect to a functor L if ξ = EpiL ξ. It follows
that

Corollary 98. For every functor L, the map EpiL is a concrete reflector.

16.2. Epitopologies. If L = T (the topologizer), then we abridge Epi =
EpiT . A convergence ξ is called an epitopology if Epi ξ ≥ ξ. By Corollary
98 the class of epitopologies is a concretely reflective subcategory of the
category of convergence spaces. Of course, Epi is the corresponding reflector,
that we call the epitopologizer. Because the Sierpiński topology $ is initially
dense in fixT (the category of topological spaces), by Corollary 84 implies
that

Epi ξ = Epi$ ξ.

This fact is of great importance, because it reduces considerably the com-
plexity of reasonings envolving the epitopologizer.

Proposition 99. The epitopologizer commutes with finite products.

Proof. By Proposition 96 [Epi ξ, $] = [ξ, $]. This and (50) imply that

[ξ × Epi τ , $] ≈ [ξ, [Epi τ , $]] = [ξ, [τ , $]] ≈ [ξ × τ , $].

Hence Epi(ξ × Epi τ) = j−[[ξ × Epi τ , $], $] = j−[[ξ × τ , $], $] = Epi(ξ × τ),
and thus

ξ × Epi τ ≥ Epi(ξ × Epi τ) = Epi(ξ × τ).

Therefore Epi ξ × Epi τ ≥ Epi(Epi ξ × τ) ≥ Epi Epi(ξ × τ) = Epi(ξ × τ).

It follows from Proposition 85 that

Corollary 100. The class of epitopologies is exponential.
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F. Mynard gave in [38] an explicit formula for the epitopologizer similar
to that for adherence-determined convergences in (24), namely

(57) limEpi ξ F =
⋂

Fξ3H#F
clξ(adhξH),

where Fξ stands for the class of the ξ-reduced filters, that is, the filters of
the form |G| ≈ {

⋃
B∈GB : G ∈ G} where G is a filter on C(ξ, $).

Proof. By definition, x ∈ limEpi ξ F if and only if 〈x,A〉 ∈ lim$〈F ,G〉 for
every A ∈ C(ξ, $) and each filter G on C(ξ, $) such that A ∈ lim[ξ,$] G.
Because the only $-neighborhood of 0 is the whole {0, 1}, the condition
〈x,A〉 ∈ lim$〈F ,G〉 need be considered only in case 〈x,A〉 = 1. Therefore,
and on recalling (55), x ∈ limEpi ξ F if and only if for every filter G on the
set of ξ-closed sets such that adhξ |G| ⊂ A = clξ A if x /∈ A then there is
F ∈ F and G ∈ G such that F ∩

⋃
B∈GB = ∅, which means that F does not

mesh with |G|. By taking A = clξ(adhξ |G|), our condition can be rephrased:
x ∈ clξ(adhξH) for every ξ-reduced filter H that meshes with F .

In order to avoid introducing several other concepts, the following char-
acterization of epitopologies is given here only for T1-convergences, that is,
those for which all the singletons are closed.83

Proposition 101. A T1 convergence is an epitopology if and only if it is a
pseudotopology with closed limits.

Proof. If a convergence ξ is T1, then every filter on |ξ| is a ξ-reduced filter,84

hence in this case (57) becomes

(58) limEpi ξ F =
⋂
H#F

clξ(adhξH).

If ξ is an epitopology, then by (58) it has closed limits, and is a pseudotopol-
ogy, because limSξ F =

⋂
H#F adhξH ⊂

⋂
H#F clξ(adhξH). Conversely, if

ξ is a pseudotopology with closed limits and x /∈ limξ F then there is an
ultrafilter U#F such that x /∈ adhξ U = limξ U = clξ(adhξ U) because the
limits are closed. Hence x /∈ limEpi ξ F showing that ξ is an epitopology.

Proposition 102. Each topology is an epitopology.

Proof. Obviously, each principal filter of a ξ-closed set is ξ-reduced. Hence
by (57) and (28) each topology is an epitopology.

It was mentioned in a footnote that some authors (e.g., H. J. Kowalsky
[36]) define a convergence as a relation fulfilling (8)(9) (as I do) and an
additional axiom

(59) limF0 ∩ limF1 ⊂ lim(F0 ∩ F1).

83One of the characterizations of epitopologies (due to Bourdaud) is: A convergence is
an epitopology if and only if it is a star-regular pseudotopology with closed limits [20].

84Indeed, if H is a filter on |ξ| then take the filter G on C(ξ, $) generated by {{{x} :
x ∈ H} : H ∈ H}. Then |G| = H.
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I call a convergence a prototopology if it fulfills (59). It is straightforward that
prototopologies constitute a concretely reflective subcategory of convergence
spaces. An important fact is that

Proposition 103. The class of topologies is finally dense in that of proto-
topologies.

Proof. Let ξ be a prototopology on X. For every x ∈ X and each filter F
such that x ∈ limξ F let τx,F be a topology on X such that F ∧ (x)• is
the neighborhood filter of x and all other elements of X are isolated. Then
ξ =

∧
(F ,x)∈ξ τx,F .

Theorem 104. [6] The category of epitopologies is the least exponential
reflective subcategory of prototopologies that includes all topologies.

Proof. Let L be an exponential reflective subcategory of prototopologies
that contains all topologies. By Proposition 103 for every prototopology ξ,
there exist a family {τk : k ∈ K} of topologies such that ξ =

∧
k∈K τk. By

virtue of Corollary 84,

[ξ, $] =
∨
k∈K

(j∗)−[τk, $].

Because L is exponential and contains all topologies, [τk, $] ∈ L for every
k ∈ K, and since L is reflective, [ξ, $] ∈ L as the initial object with respect
to prototopologies in L. Therefore [[ξ, $], $] ∈ L because L is exponential,
and thus the initial prototopology Epi ξ = j−[[ξ, $], $] belongs to L, because
L is reflective. It follows that every epitopology belongs to L.

17. Reflective properties of power convergences

We have seen that if M is an arbitrary functor, then the class of all the
convergences τ such that Mτ ≥ τ is reflective.85 An important problem
consists in characterizing convergences ξ such that

(60) M [ξ, σ] ≥ [ξ, σ]

for each σ ∈ D ⊂ fixM .86

Example 105. If M is equal to the topologizer T , then (60) is equivalent
to the problem, the solution of which was given in Theorem 89 in the spe-
cial case of Hausdorff regular topologies ξ and the class D consisting of the
Sierpiński topology $.

Let M be a functor, L a reflector. For a convergence σ, let

(61) EpiσM ξ = j−[M [ξ, σ], σ],

where j is the injection of |ξ| into C([ξ, σ], σ), and

(62) EpiLM ξ =
∨

σ=Lσ
EpiσM ξ.

85This does not mean in general that M is the reflector of the reflective class it defines.
86This is a very special case of problems thoroughly studied by F. Mynard (e.g., [39]).
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Theorem 106. [20, Theorem 15.2] Let M be a functor, L a reflector, and
ξ ≥ θ be convergences on the same underlying set. The following are equiv-
alent:

θ ×Mτ ≥ L(ξ × τ) for each τ ;(63)

M [ξ, σ] ≥ [θ, σ] for every σ = Lσ;(64)

θ ≥ EpiLM ξ.(65)

Proof. (63) ⇒ (64). If τ is a topology on a singleton87, then (63) implies
θ ≥ Lξ, hence ξ ≥ θ ≥ Lξ. Therefore C(Lξ, σ) ⊂ C(θ, σ) ⊂ C(ξ, σ) for
every convergence σ. On the other hand, C(ξ, σ) ⊂ C(Lξ, Lσ) for every
functor L, so that if σ = Lσ then C(ξ, σ) ⊂ C(Lξ, σ). This implies that
[ξ, σ] and [θ, σ] have the same underlying set. For τ = [ξ, σ] the inequality
(63) becomes

θ ×M [ξ, σ] ≥ L(ξ × [ξ, σ]) ≥ L(e−σ) = e−σ,

which means that M [ξ, σ] ≥ [θ, σ].
(64) ⇒ (65) On applying j−[·, σ] to (64), we get

EpiσM ξ = j−[M [ξ, σ], σ] ≥ j−[[θ, σ], σ] ≤ θ

for every σ = Lσ, thus (65).
(65) ⇒ (63). By Lemma 76 it is enough to prove that C(ξ × τ , σ) ⊂

C(θ ×Mτ, σ) for each τ and every σ = Lσ. If f ∈ C(ξ × τ , σ) then by
(49) tf ∈ C(τ , [ξ, σ]), hence by (46) tf ∈ C(Mτ,M [ξ, σ]) , and thus (tf)∗ ∈
C([M [ξ, σ], σ], [Mτ, σ]) by Proposition 79. On the other hand, by (65), θ ≥
j−([M [ξ, σ], σ]) for each σ ∈ fixL, which means that the injection j belongs
to C(θ, [M [ξ, σ], σ]). Therefore the composition (tf)∗ ◦ j ∈ C(θ, [Mτ, σ]),
which means that f = ̂(tf)∗ ◦ j ∈ C(θ ×Mξ, σ).

In the particular case M = JE where J is a reflector, E is a coreflector
and θ = ξ, Theorem 106 entails immediately88 the following special case of
a theorem of F. Mynard [39, Theorem 3.1].

Theorem 107. Let J, L be reflectors, E a coreflector, and ξ a convergence.
The following are equivalent:

ξ × Jτ ≥ L(ξ × τ) for each τ ≥ JEτ (for each τ = Eτ);(66)

JE[ξ, σ] ≥ [ξ, σ] for every σ = Lσ;(67)

ξ ≥ EpiLJE ξ;(68)

i× f is L-quotient for every J-quotient f with JE-domain.(69)

The last term of the equivalence above follows from Remark 74 and The-
orem 71.

87There is a unique topology on a singleton.
88on using JJ = J .
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Remark 108. The list of equivalences in Theorem 106 can be extended. In
particular, they hold if and only if

(70) M [ξ, ρ] ≥ [θ, ρ] for every ρ ∈ D,
where D is an initially dense subclass of fix J . In fact, if σ ∈ fix J , then
there exists a class of maps {gι : ι ∈ I} such that σ =

∨
ι∈I g

−
ι ρι with ρι ∈ D

for each ι ∈ I. Therefore, by Corollary 84,

(71) [ξ, σ] = [ξ,
∨

ι∈I
g−ι ρι] =

∨C

ι∈I
(g∗ι )

−[ξ, ρι],

hence, by (39),

M [ξ, σ] ≥
∨C

ι∈I
M(g∗ι )

−[ξ, ρι] ≥
∨C

ι∈I
(g∗ι )

−M [θ, ρι],

so that M [ξ, σ] ≥ [θ, σ] by virtue of (70) and (71). On the other hand, (65)
implies

(72) θ ≥
∨

ρ∈D
j−[M [ξ, ρ], ρ],

and (72) entails (63), because on one hand, our proof of the implication (63)
by (65) hinges entirely on Lemma 76, and on the other, the conclusion of
Lemma 76 depends on initially dense subclasses by virtue of Proposition 77.

This fact has considerable importance in deciding whether a power con-
vergence with respect to a topology is in the reflective class determined by
M .

Corollary 109. If M ≥ T is a functor, and ξ is a convergence, then
M [ξ, σ] ≥ [ξ, σ] for every topology σ if and only if M [ξ, $] ≥ [ξ, $] if and
only if ξ ≥ j−[M [ξ, $], $].89

By Theorem 89 the upper Kuratowski convergence with respect to a Haus-
dorff regular topology is topological (equivalently, pretopological) if and only
if the underlying topology is locally compact. Therefore

Corollary 110. The topologizer T and the pretopologizer P do not commute
with finite products.

Example 111. Let us come back to the case where M is equal to the topol-
ogizer T and D consists of the Sierpiński topology. Then the power conver-
gences are upper Kuratowski convergences. Now Theorem 106 furnishes a
sufficient and necessary condition for the topologicity of [ξ, $] for an arbi-
trary convergence (without any separation assumptions). We just need to
interpret the condition ξ ≥ EpiT ξ, which amounts to j−[T [ξ, $], $] ≤ ξ.

A topology ξ is called core-compact [9] if for every element x and each O ∈
Nξ(x) there exist V ∈ Nξ(x) such that V is ξ-compact at O. The following
theorem was established in different terms90 by Hofmann and Lawson in
[32]; a more general result (for arbitrary convergences) was proved in [20].

89In fact, it can be shown [39] that EpiTM ξ = j−[M [ξ, $], $].
90of the Scott topology
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Theorem 112. The upper Kuratowski convergence with respect to a topology
ξ is topological if and only if ξ is core-compact.

Proof. By Corollary 109 with M = T , we need show that ξ is core-compact
if and only if ξ ≥ j−[T [ξ, $], $]. Because ξ is a topology, it is enough to show
that for every element x the neighborhood filter Nξ(x) converges to x in
j−[T [ξ, $], $]. In other words, we need prove that for every ξ-closed set A

(73) 〈x,A〉 ∈ limξ〈Nξ(x),N[ξ,$](A)〉.

In the Sierpiński topology the only case of the formula above which is not
always fulfilled is when 〈x,A〉 = 1 (equivalently, if x /∈ A). In this case, there
exist V ∈ Nξ(x) and A ∈ N[ξ,$](A) such that V ∩D = ∅ for each D ∈ A.
By Corollary 91 this is equivalent to the existence of a ξ-compact family
B = Ac such that O ∈ B and

⋂
B∈B B ⊃ V and thus

⋂
B∈B B ∈ Nξ(x).

Therefore if H is a filter such that V ∈ H# then H#B and by compactness
adhξH ∈ B# hence in particular, adhξH∩O 6= ∅, that is, ξ is core-compact.
Conversely if V is compact at O, then the family Oξ(V ) of all ξ-open sets
which contain V , is ξ-compact at O.

Similarly, if M = L = T Theorems 106 and 112, and Proposition 75 yield
a generalization of Theorem 72:

Theorem 113. A topological space is core-compact if and only if the product
of its identity map with every quotient map is quotient.

These results are instances of a general scheme, which enables one, for
example, to characterize those ξ for which [ξ, $] is a TE-convergence.

If in the definition of core-compactness we replace the topology ξ by
T Seq ξ (equivalently, by T First ξ) then we get countable core-compactness:
a topology ξ is called countably core-compact if for every element x and
each O ∈ Nξ(x) and each countably based filter F which converges to x,
there exists F ∈ F which is ξ-compact at O. Also Corollary 91 is a special
case of a more abstract result, which in particular gives a characterization
of sequentially open subsets of [ξ, $] in terms of countably compact families
of open sets (see [2]). Because a topology τ is sequential whenever τ =
T First τ , on replacing T by T First in Theorem 112 and in its proof, we
conclude that

Theorem 114. [19] The upper Kuratowski convergence with respect to a
topology ξ is a sequential topology if and only if ξ is countably core-compact.

On setting in Theorem 107 J = L = T and E = First we recover this
generalization of Theorem 73

Theorem 115. [19] A topological space is countably core-compact if and
only if the product of its identity map with every quotient map from a se-
quential topological space is quotient.
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