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Abstract. The Isbell, compact-open and point-open topologies on the set
C(X;R) of continuous real-valued maps can be represented as the dual topolo-
gies with respect to some collections �(X) of compact families of open subsets
of a topological space X. Those �(X) for which addition is jointly continuous
at the zero function in C�(X;R) are characterized, and su¢ cient conditions
for translations to be continuous are found. As a result, collections �(X) for
which C�(X;R) is a topological vector space are de�ned canonically. The
Isbell topology coincides with this vector space topology if and only if X is
infraconsonant. Examples based on measure theoretic methods, that C�(X;R)
can be strictly �ner than the compact-open topology, are given.

1. Introduction

The Isbell, compact-open and point-open topologies on the set C(X;Y ) of con-
tinuous real-valued maps from X to Y , can be represented as the dual topologies
with regard to some collections � = �(X) of compact openly isotone families of a
topological space X, that is, the topology �(X;Y ) is determined by a subbase of
open sets of the form

(1.1) [A; U ] :=
�
f 2 C(X;R) : f� (U) 2 A

	
;

where? =2 A 2 � and U are open subsets of Y (and f�(U) := fx 2 X : f(x) 2 Ug1).
They are dual with regard to the collections, respectively, �(X) of all compact fam-
ilies, k(X) of compactly generated families and p(X) �nitely generated families on
X. Although p(X;R) and k(X;R) are topological vector spaces for each X, the
Isbell topology �(X;R) need not be even translation-invariant. If X is consonant
(that is, if k(X; $�) = �(X; $�), where $� designs the Sierpínski topology) then
k(X;R) and �(X;R) coincide, and in particular �(X;R) is a group topology. In [5]
we characterized those topologies X, for which addition is jointly continuous at the
zero function for the Isbell topology �(X;R); the class of such topologies, called
infraconsonant, is larger than that of consonant topologies, but we do not know if
the two classes coincide in case of completely regular topologies X. In this paper
we prove that the Isbell topology �(X;R) is a group topology if and only if X is
infraconsonant. More generally, for each X there exists a largest hereditary (2)
collection �#(X) � �(X), for which the addition is jointly continuous at the zero
function in �#(X;R). It turns out that �#(X;R) is a vector space topology and that
a completely regular space X is infraconsonant if and only if �#(X;R) = �(X;R).

Date : May 22, 2009.
1f�(U) is a shorthand for f�1(U)
2A collection � is hereditary if A # A 2 � whenever A 2 A 2 �; where A # A is de�ned by

(2.2).
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Using measure theoretic methods, we show in particular that if a completely regular
X is not pre-Radon, then k(X;R) is strictly included in �#(X;R).

2. Generalities

If A is a family of subsets of a topological space X then OX(A) denotes the
family of open subsets of X containing an element of A. In particular, if A � X
then OX(A) denotes the family of open subsets of X containing A. We denote by
OX the set of open subsets of X:
If X and Y are topological spaces, C(X;Y ) denotes the set of continuous func-

tions from X to Y: If A � X, U � Y , then [A;U ] := ff 2 C(X;Y ) : f(A) � Ug. A
family A of subsets of X is openly isotone if OX (A) = A. If A is openly isotone
and U is open, then [A; U ] =

S
A2A[A;U ].

If � is a collection of openly isotone families A of open subsets of X, such that
each open subset of X belongs to an element of �; then

f[A; U ] : A 2 �;U 2 OY g
forms a subbase for a topology �(X;Y ) on C(X;Y ): We denote the set C(X;Y )
endowed with this topology by C�(X;Y ). Note that because

[A; U ] \ [B; U ] = [A \ B; U ];
�(X;Y ) and �\(X;Y ) coincide, where �\ consists of �nite intersections of the
elements of �. Therefore, we can always assume that � is stable under �nite
intersections.
In the sequel, we will focus on the case where � consists of compact families. A

family A = OX(A) is compact if whenever P � OX and
S
P 2 A then there is a

�nite subfamily P0 of P such that
S
P0 2 A. Of course, for each compact subset

K of X; the family OX(K) is compact.
We denote by �(X) the collection of compact families on X. Seen as a family

of subsets of OX (the set of open subsets of X), �(X) is the set of open sets for
the Scott topology ; hence every union of compact families is compact, in particularS
K2KOX(K) is compact if K is a family of compact subsets of X. A topological

space is called consonant if every compact family A is compactly generated, that
is, there is a family K of compact sets such that A =

S
K2KOX(K). Similarly,

p(X) := fOX(F ) : F 2 [X]<!g and k(X) := fO(K) : K � X compact g are basis
for topologies on OX . Accordingly, p(X;Y ) is the topology of pointwise convergence,
k(X;Y ) is the compact-open topology and �(X;Y ) is the Isbell topology on C(X;Y ):
If $� := f?; f0g ; f0; 1gg the function spaces C(X; $�) can be identi�ed with

the set of open subsets of X (3). In this notation, X is consonant if and only if
Ck(X; $

�) = C�(X; $
�):

More generally, a space X is called Z-consonant if C�(X;Z) = Ck(X;Z) [11,
chapter 3]. [11, Problem 62] asks for what spaces Z (other than $�) Z-consonance
impies consonance. A still more general problem is, given a collection � of compact
families de�ned for each space X; to determine for what spaces Z,

(2.1) Ck(X;Z) = C�(X;Z)() Ck(X; $
�) = C�(X; $

�):

3In [3], [5] and [6], we distinguish two homeomorphic copies $ := f?; f1g ; f0; 1gg and $� :=
f?; f0g ; f0; 1gg of the Sierpínski topology on f0; 1g and identify the function spaces C(X; $) and
C(X; $�) with the set of closed subsets of X and open subsets of X respectively. This is why we
use $�here.
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The latter equality always implies the former. More generally, in view of the
de�nition of �(X;Z), if � and 
 are collections (of compact families on X), then

C�(X; $
�) � C
(X; $�) =) C�(X;Z) � C
(X;Z)

for every topological space Z. To show the converse implication under some addi-
tional assumptions, recall that the restriction of A to A 2 A is de�ned by

(2.2) A # A := fU 2 OX : 9B � A \ U;B 2 Ag:
[5, Lemma 2.8] shows that if A is a compact family and A 2 A, then A # A is
compact too. A collection � of families of open subsets of a given set is hereditary
if A # A 2 � whenever A 2 � and A 2 A.
It was shown in [5, Proposition 2.4] that if X is completely regular and R-

consonant, then it is consonant. More generally:

Proposition 2.1. If �; 
 � �(X) are two topologies, � is hereditary, X is com-
pletely regular, and C�(X;R) � C
(X;R), then C�(X; $�) � C
(X; $�).

Proof. The neighborhood �lter of an open set A with respect to �(X; $�) is gen-
erated by a base of the form fA 2 � : A 2 Ag. Therefore we need show that for
each A 2 � and each A 2 A; there exists G 2 
 such that G � A # A. By as-
sumption, N
(0) � N�(0) so that for each A 2 � and each A 2 A; there exists
G 2 
 and r > 0 such that [G; (�r; r)] �

�
A # A; (� 1

2 ;
1
2 )
�
: Suppose that there exists

G 2 G n (A # A), hence X nG 2 (A # A)#. Because X is completely regular and G
is compact there is G0 2 G and a continuous function f such that f(G0) = f0g and
f(X nG) = f1g ; by [5, Lemma 2.5]. Then f 2 [G; (�r; r)] but f =2

�
A # A; (� 1

2 ;
1
2 )
�
,

because 1 2 f(B) for each B 2 A # A. Therefore A 2 G � A # A � A; so that
� � 
: �
Corollary 2.2. If X is completely regular and � � �(X) is hereditary, then (2.1)
holds for Z = R.

The grill of a family A of subsets of X is the family A# := fB � X : 8A 2 A,
A \B 6= ?g. Note that if A = O(A), then

A 2 A ()Ac =2 A#.
If A 2 �(X) and C is a closed subset of X such that C 2 A# then the family

A _ C := O (fA \ C : A 2 Ag) ;
called section of A by C; is a compact family on X [3]. A collection � of families
of open subsets of a given set is sectionable if A_C 2 � whenever A 2 � and C is
a closed set in A#: It was shown in [5, Theorem 2.9] that C�(X;Z) is completely
regular whenever Z is. A simple modi�cation of the proof leads to the following
generalization.

Theorem 2.3. If Z is completely regular and � � �(X) is sectionable, then
C�(X;Z) is completely regular.

As r[A; U ] = [A; rU ] for all r 6= 0; it is immediate that inversion for + is always
continuous in C�(X;R): More generally, the proof of the joint continuity of scalar
multiplication in C�(X;R) [5, Proposition 2.10] can be adapted to the e¤ect that:

Proposition 2.4. If � � �(X) is hereditary, then multiplication by scalars is
jointly continuous for C�(X;R).



4 SZYMON DOLECKI, FRANCIS JORDAN AND FRÉDÉRIC MYNARD

Corollary 2.5. Let � � �(X) be hereditary. If C�(X;R) is a topological group
then it is a topological vector space.

3. Self-joinable collections and joint continuity of addition at the
zero function

As usual, if A and B are subsets of an additive group, A+B := fa+b : a 2 A; b 2
Bg and if A and B are two families of subsets, A+ B := fA+B : A 2 A; B 2 Bg.
As we have mentioned, a topology on an additive group is a group topology if

and only if inversion and translations are continuous, and N (o) + N (o) � N (o),
where o is the neutral element. First, we investigate the latter property, that is,

(3.1) N�(0) +N�(0) � N�(0);

for the space C�(X;R); where 0 denotes the zero function.
If � and 
 are two subsets of �(X); we say that � is 
-joinable if for every A 2 �;

there is G 2 
 such that G _ G � A, where

G _ G := fG1 \G2 : G1; G2 2 Gg:

A subset � of �(X) is self-joinable if it is �-joinable. A family A is called joinable
if fAg is �(X)-joinable. In [5], a space X is called infraconsonant if every compact
family is joinable, that is, �(X) is self-joinable. [5, Theorem 3.1] shows that among
completely regular spaces X;

N�(0) +N�(0) � N�(0)

if and only if X is infraconsonant. More generally,

Theorem 3.1. Let X be a completely regular space. Then � � �(X) is self-joinable
if and only if

(3.2) N�(0) +N�(0) � N�(0):

Proof. Let A 2� and V 2 NR(0): Because � is self-joinable, there exist a compact
family B in � such that B _ B � A. If W 2 NR(0) such that W +W � V , then
[B;W ] + [B;W ] � [A; V ], which proves (3.2):
Conversely, assume that � = �\ is not self-joinable. Let A be a family of � such

that B _ B * A for every B 2 �. Note that B _ C * A for every pair of families B
and C in � for otherwise D = B \ C would be a family of � such that D _D � A.
Let V =

�
� 1
2 ;

1
2

�
: We claim that for any pair (B; C) 2 �2 and any pair (U;W )

of R-neighborhood of 0; [B; U ] + [C;W ] * [A; V ]. Indeed, there exist B 2 B and
C 2 C such that B \ C =2 A. Then Bc [ Cc 2 A#. Moreover, Bc =2 B# so that by
[5, Lemma 2.5], there exist B1 2 B and f 2 C(X;R) such that f(B1) = f0g and
f(Bc) = f1g: Similarly, Cc =2 C so that there exist C1 2 C and g 2 C(X;R) such
that g(C1) = f0g and g(Cc) = f1g: Then f + g 2 [B; U ]+ [C;W ] but 1 2 (f + g)(A)
for all A 2 A so that f + g =2 [A; V ]. �

Note that the collection k(X) (of compactly generated families) is self-joinable,
and that a union of self-joinable collections is self-joinable. Therefore, there is a
largest self-joinable subset �(X) of �(X). If � is self-joinable, so is �\. Therefore
�(X) is stable for �nite intersections. In fact, �(X) is a topology on C(X; $�) and

(3.3) k(X) � �(X) � �(X):
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Corollary 3.2. Let X be completely regular. The largest subcollection � of �(X),
for which (3.2) holds is � = �(X). In particular, a completely regular space X is
infraconsonant if and only if �(X) = �(X):

The collection �(X) is sectionable (4), but in general it is not hereditary. We
will construct now a largest hereditary collection of compact families for which (3.2)
holds.
If � and 
 are two subsets of �(X); we say that � is hereditarily 
-joinable if

for every A 2 �; and every A 2 A, there is G 2 
 such that A 2 G and G _ G � A.
A subset � of �(X) is hereditarily self-joinable if it is hereditarily �-joinable. A
family A is called hereditarily joinable if fAg is hereditarily �(X)-joinable. There
exists a largest hereditarily self-joinable subset �#(X) of �(X): Notice that �#(X)
is also the largest self-joinable and hereditary collection of compact families, and
that �#(X) is sectionable.

Corollary 3.3. Let X be completely regular. The largest hereditary subcollection
� of �(X), for which (3.2) holds is � = �#(X). In particular, a completely regular
space X is infraconsonant if and only if �(X) = �#(X):

Of course, �#(X) is a topology, and �#(X) � �(X). The inclusion can be strict.
In fact, we have:

Proposition 3.4. A regular space X is infraconsonant if and only if �#(X) =
�(X) if and only if �(X) = �#(X):

Proof. If X is not infraconsonant, there is a non-joinable family A on X. For
any x 2 X n

T
A; the family O(x) [ A belongs to �(X) but not to �#(X). If X

is regular and infraconsonant, then by [5, Lemma 3.2] �(X) = �#(X). Finally if
�(X) = �#(X) then �#(X) = �(X), because �(X) is between �#(X) and �(X). �
Examples of non-infraconsonant spaces are provided in [5], so that both inclu-

sions in (3.3) can be strict simultaneously.

4. Self-splittable collections and continuity of translations

A collection � is 
-splittable if for every A 2 � and for every open subsets U1 and
U2 of X such that U1[U2 2 A there exist families Gi = Gi # Ui in 
; i 2 f1; 2g; such
that G1 \ G2 � A. A collection � is self-splittable if it is �-splittable. A compact
family A on X is splittable if fAg is �(X)-splittable. An immediate induction
shows that if � is self-splittable, then for every A 2 � and every �nite collection
fU1; : : : ; Ung of open subsets of X such that

Sn
i=1 Ui 2 A; there are families Ci 2 �

with Ci = Ci # Ui such that
Tn
i=1 Ci � A.

In [10], F. Jordan calls a topological space compactly splittable if every compact
family is splittable. A topological space with at most one non-isolated point is said
to be prime. A modi�cation of the proof of [9, Theorem 18] shows:

Proposition 4.1. Prime spaces are compactly splittable.

It follows from [10, Theorem 2] and [5, Corollary 4.2] that translations are con-
tinuous in the Isbell topological space C�(X;R) if X is compactly splittable. More
generally, we have:

4Indeed, if � is self-joinable, so is
�
A _ C : A 2 �;C 2 A#; C closed

	
because if A 2 �, there

is B 2 � such that B _ B � A � A _ C. By maximality, �(X) is sectionable.
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Proposition 4.2. If � � �(X) is self-splittable, then translations are continuous
for C�(X;R).

Proof. We show continuity of the translation by f0 at g0: Let A 2 � and U 2 OR
such that f0 + g0 2 [A; U ]. There is A0 2 A such that (f0 + g0)(A0) � U . For
each x 2 A0, there exists Vx = �Vx 2 OR(0) such that f0(x) + g0(x) + 2Vx � U .
Moreover, by continuity of f0 and g0, there is Wx 2 OX(x) such that f0(Wx) �
f0(x)+Vx and g0(Wx) � g0(x)+Vx. As

S
x2A0

Wx 2 A and A is compact, there is
a �nite subset F of A0 such that W :=

S
x2F Wx 2 A. Because � is self-splittable,

there exists, for each x 2 F , a compact family Cx = Cx # Wx of � such thatT
x2F Cx � A. Note that by construction g0 2

T
x2F [Cx; g0(x) + Vx]. Moreover, if

g 2
T
x2F [Cx; g0(x) + Vx], then for each x 2 F there is Cx 2 Cx, Cx � Wx, such

that g(Cx) � g0(x) + Vx. If y 2
S
x2F Cx 2 A, then y 2 Cx for some x and

f0(y) + g(y) 2 f0(x) + Vx + g0(x) + Vx � U;
so that f0 +

T
x2F [Cx; g0(x) + Vx] � [A; U ]. �

[3, Example 4.9] shows that even on a compactly splittable space (like the
Arens space), there exists � � �(X) such that translations are not continuous
for C�(X;R); so that � is not self-splittable.
Note that in a regular space X, the collection k(X) is self-splittable, and a

union of self-splittable collections is self-splittable. Therefore, there is a largest
self-splittable subset �(X) of �(X). If � is self-splittable, so is �\, hence that
�(X) is a topology on C(X; $�), and

(4.1) k(X) � �(X) � �(X):
Moreover, �(X) is clearly hereditary, and sectionable (5).
Both inequalities in (4.1) can be strict. Examples of non-compactly splittable

spaces are provided in [9], so that �(X) can be strictly included in �(X). On the
other hand, in view of Proposition 4.1, if X is prime and not consonant (e.g., the
Arens space), then k(X) is strictly included in �(X).

Theorem 4.3. Let X be regular. If � � �(X) is self-joinable, hereditary, and
sectionable, then � is self-splittable.

Proof. By way of contradiction, assume that � is not self-splittable. Let �1 =
� [ fO(X)g. Using that ; 2 O(X), one can easily show that �1 is self-joinable,
hereditary, and sectionable. It is also easy to check that �1 is not self-splittable.
Let C 2 �1 witness that �1 is not self-splittable. There exist C 2 �1 and open

sets U1; U2 such that U1 [ U2 2 C, but for any B1;B2 2 �1 with U1 2 B1 and
U2 2 B2 we have B1 \ B2*C.
By regularity, there is an open cover V of U1 [ U2 such that cl(V ) � U1 or

cl(V ) � U2 for every V 2 V. Since U1[U2 2 C, there exist a �nite V1 � V such thatS
V1 2 C. Let W1 =

S
fV 2 V1 : cl(V ) � U1g and W2 =

S
fV 2 V1 : cl(V ) � U2g.

5Indeed, if � is self-splittable, so is
�
A _ C : A 2 �;C 2 A#; C closed

	
. Indeed, if

Sn
i=1 Ui 2

A_C; then
Sn
i=1 Ui [Cc 2 A; so that there are families Ci = Ci # Ui and Cc = Cc # Cc in � such

that
T
Ci \ Cc � A. Therefore\

i

Ci _ C =
 \

i

Ci \ Cc

!
_ C � A _ C:

By maximality, �(X) is sectionable.
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Notice that W1 [W2 2 C, cl(W1) � U1, and cl(W2) � U2. Let C1 = C # (W1 [W2).
Since �1 is hereditary, C1 2 �1. By self-joinability of �1 there is a D 2 �1 such
that D

W
D � C1. Notice that D � C1.

Suppose there is a D 2 D such that D \W1 = ;. Since D 2 D � C1, there is an
E 2 C such that E � D\ (W1 [W2). Notice that E �W2 � U2. So, U2 2 C. Since
�1 is hereditary, C # U2 2 �1. Notice that U2 2 C # U2 2 �1, U1 2 O(X) 2 �1, and
C # U2 \ O(X) = C # U2 � C, which contradicts our choice of U1 and U2. So, we
may assume that D#W1. Similarly, we may assume that D#W2.
For each i 2 f1; 2g let Di = D

W
cl(Wi). Since �1 is sectionable, D1;D2 2 �1.

Notice that Ui 2 Di for every i. Let P 2 D1 \ D2. For every i 2 f1; 2g there exist
Di 2 D such that Di \ cl(Wi) � P . Since D1; D2 2 D, D1 \D2 2 C1. There is an
E 2 C such that E � D1 \D2 \ (W1 [W2). Now,

E � (D1 \D2) \ cl(W1 [W2) � (D1 \ cl(W1)) [ (D2 \ cl(W2)) � P:
So, P 2 C. Thus, D1 \ D2 � C, contradicting our choice of U1 and U2. �
Corollary 4.4. Let X be regular. If X is infraconsonant then X is compactly
splittable.

Proof. If X is infraconsonant, then �(X) is self-joinable. Since �(X) is heredi-
tary and sectionable, �(X) is self-splittable, by Theorem 4.3. Since �(X) is self-
splittable, X is compactly splittable. �
Note that Corollary 4.4 provides a negative answer to [5, Problem 1.2]. The

converse of Corollary 4.4 is not true. For instance, the Arens space is compactly
splittable because it is prime, but it is not infraconsonant [5, Theorem 3.6].
In the diagram below, X is a regular space, and arrows represent inclusions.

We have already justi�ed that all of these inclusions may be strict, except for
k(X) � �#(X). We will see in the next section that it may be strict.

k(X) �#(X)

�(X)

�(X)

�(X)-

�
��

@
@R

@
@R

�
��

In view of Proposition 2.4, Theorem 3.1, Proposition 4.2 and Theorem 4.3, we
obtain:

Corollary 4.5. Let X be completely regular. Then C�#(X;R) is a topological vector
space.

As a consequence, we can extend [5, Theorem 5.3] from prime spaces to general
completely regular spaces to the e¤ect that:

Corollary 4.6. Let X be completely regular. The following are equivalent:
(1) X is infraconsonant;
(2) �(X) = �(X);
(3) �(X) = �#(X);
(4) �(X) = �#(X);
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(5) C�(X;R) is a topological vector space;
(6) C�(X;R) is a topological group;
(7) N�(0) +N�(0) � N�(0);
(8) \ : C�(X; $�)� C�(X; $�)! C�(X; $

�) is jointly continuous.

Proof. Equivalences between (1) through (7) follow immediately from Theorem
3.1, Corollary 3.2 and Proposition 3.4. The equivalence with (8) follows from [5,
Proposition 3.3]. �

5. A vector space topology strictly finer than the compact-open
topology

A �nite measure � is called � -additive if for every family P � OX ; and for every
" > 0 there is a �nite subfamily P" � P such that �(

S
P") � �(

S
P)� ": Hence, if

� is a � -additive measure on X; then for each r > 0; the family

M�
r := fO 2 OX : �(O) > rg

is compact. A topological spaceX is called pre-Radon if every �nite � -additive mea-
sure � on X is a Radon measure, that is, �(B) = sup f�(K) : K � B;K compactg
for each Borel subset B of X.

Lemma 5.1. Let � be a � -additive �nite measure on a space X. Then 
� :=
fM�

r # A : A 2M�
r ; r > 0g is self-splittable and hereditarily self-joinable.

Proof. Proof of 1. 
� is hereditary and self-joinable (hence hereditarily self-joinable)

because if U 2M�
r and m = r+�(U)

2 then

(5.1) (M�
m # U) _ (M�

m # U) �M�
r # U:

Indeed, if O1 and O2 are elements ofM�
m # U; we can assume that �(O1[O2) �

�(U) so that

�(O1 \O2) = �(O1) + �(O2)� �(O1 [O2) > 2m� �(U) = r:
Self-splittability follows from the fact (6) that if U1 [ U2 2 Mr, for d :=

min(�(U1); �(U2); �(U1 [ U2) � r) > 0, m1 := �(U1) � d
2 , m2 := �(U2) � d

2 , we
have

(5.2)
�
M�

m1
# U1

�
\
�
M�

m2
# U2

�
�Mr:

Indeed, if Ai 2M�
mi
# Ui for i 2 f1; 2g, then
�(A1 [A2) = �(A1) + �(A2)� �(A1 \A2)

� �(A1) + �(A2)� �(U1 \ U2)
> �(U1) + �(U2)� �(U1 \ U2)� d
> r:

�

Theorem 5.2. If X is a (Hausdor¤ ) completely regular space but is not pre-Radon,
then

C�#(X;R) > Ck(X;R):

6Note that 
� is not sectionable, so that Theorem 4.3 is not su¢ cient to deduce self-splittability.
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Proof. The proof of [2, Proposition 3.1] shows that if X is a Hausdor¤ non pre-
Radon space, then there is a � -additive �nite measure � and an r > 0 such that
Mr is compact but not compactly generated. In view of Lemma 5.1, 
� � �#(X)
so that Ck(X; $�) < C�#(X; $�). In view of Proposition 2.2, Ck(X;R) < C�#(X;R)
because �#(X) is hereditary. �
Note that we have shown that the inclusion k(X) � �#(X) may be strict.
For instance, if X is the Sorgenfrey line, which is not pre-Radon, then C�#(X;R)

is a topological vector space and is strictly �ner than the compact-open topology.
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