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Abstract. The formulations that Peano gave to many mathematical
notions at the end of 19th century were so perfect and modern that they
have become standard today. A formal language of logic that he created,
enabled him to perceive mathematics with great precision and depth. He
described mathematics axiomatically basing the reasoning exclusively
on logical and set-theoretic primitive terms and properties, which was
revolutionary at that time. Yet numerous Peano’s contributions remain
either unremembered or underestimated.

Ask a mathematician about Peano’s achievements and you would prob-
ably hear about Peano’s continuous curve that maps the unit interval onto
a square and about Peano’s axioms of natural numbers. One might have
heard of Peano series and Peano remainder.

Figure 1. Giuseppe Peano (1858-1932)
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It is unlikely that he/she would mention “Zermelo” axiom of choice,
“Borel-Lebesgue” theorem, “Borel” theorem on smooth functions, “Fréchet”
derivative, “Bouligand” tangent cone, “Grönwall” inequality, “Banach” op-
erator norm, “Kuratowski” upper and lower limits of sequences of sets,
“Choquet” filter grill or “Mamikon” sweeping-tangent theorem, in spite of
the fact that Peano anticipated these notions or proved these theorems well
before, and often in a more accomplished and general form, than those who
granted them their names.

It is plausible that you won’t be told that he was at the origin of many
mathematical symbols (like 2,[,\,⇢, 9), of reduction of all mathematical
objects and properties to sets, of axiomatic approach to Euclidean space
(with vectors and scalar product), of the theory of linear systems of di↵er-
ential equations (with matrix exponential and resolvents), of modern neces-
sary optimality conditions, of derivation of measures, of definition of surface
area and of many others.

At the time when Peano appeared on the mathematical scene, mathe-
matical discourse was in general vague and approximative (1). Peano’s writ-
ings impress by their clarity, precision, elegance and abstraction. Although
Cauchy was praised for having given solid bases to mathematics, he was not
exempt from errors that would be characterized today as elementary. Nor
had the new rigor of Weierstrass put an end to vagueness.

The simplicity and ease with which Peano grasped the essence of things
is astonishing and contrasts sharply with a tortuous style prevailing in con-
temporaneous mathematical texts.

In this essay consisting of three parts (c.f., [7], [8]) we will recall what is
more or less forgotten about the importance of this great scientist. In doing
so, we will exploit many facts gathered in the papers commemorating the
150th anniversary of the birth of Peano by Dolecki, Greco [4, 5, 6], Greco,
Pagani [20, 21], Greco, Mazzucchi, Pagani [18, 19], Bigolin, Greco [2], Greco
[14, 12, 13] and Greco, Mazzucchi [15, 17, 16].

From a methodological point of view, we are focused mainly on primary
sources. Therefore our account of historical writings is far from being ex-
haustive.

The reader may judge whether the perceived oblivion is astonishing. We
discuss plausible reasons of this oblivion at the end of the last part of this
essay [8].

1. Short biography

Giuseppe Peano studied at the University of Turin from 1876 till 1880 and
remained therein on the faculty until his death in 1932. After graduation

1 For example, historians of mathematics agree that the first rigorous proof that a
function is constant provided that its derivative is null, was given by H. A. Schwarz in
1870. Much later, in 1946, J. H. Pearce, a reviewer of a textbook “The Theory of Functions
of Real Variables” by L. M. Graves, stresses that Rolle’s Theorem has a correct proof, “a
comparative rarity in books of this kind”.
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he became an assistant of Angelo Genocchi in the academic year 1881/82.
In charge of exercises to Genocchi’s calculus course, he soon took over the
course, because Genocchi fell ill. Peano compared lecture notes of Genocchi’s
lessons with all the principal calculus textbooks of his time. He realized that
in the contemporaneous mathematical literature numerous definitions and
proofs were flawed and many theorems had overabundant hypotheses, which
led him to rework and rectify them. This work resulted in many supplements
by Peano to the lecture notes, so that when Genocchi saw the result, that is,
Calcolo di↵erenziale e integrale [9, (1884)], he disclaimed his contribution,
stating that “everything [in the book] was due to that outstanding young
man Dr. Giuseppe Peano”.

In a celebrated Encyclopädie der Mathematischen Wissenschaften [41,
(1899)], [47, (1899)] Calcolo di↵erenziale e integrale and his another book
Lezioni di analisi infinitesimale [34, (1893)] are cited among most influential
treatises of infinitesimal calculus together with those of Euler (1748) and
Cauchy (1821).

Peano reached the summit of fame at the turn of the century, when he
took part in Paris in the International Congress of Philosophy and the Inter-
national Congress of Mathematicians. Bertrand Russell reported that Peano
was always more precise than anyone else in discussions and invariably got
the better of any argument upon which he embarked [45, (1967), p. 218].

2. Youthful achievements

Most of major achievements of Peano were realized or prefigured before he
turned thirty. They are collected in the already mentioned Calcolo di↵eren-
ziale e integrale, in Applicazioni geometriche [29, (1887)] and in Calcolo
geometrico [30, (1888)]. Hence among youthful accomplishments we will
consider those carried out a couple of years from graduation in 1880.

In 1882 he discovered that the definition of surface area, presented by
Serret in his Cours d’ Analyse [46, (1868), p. 296], was incorrect. Peano gave
an example in which Serret’s definition led to a contradiction. It turned
out that Schwarz gave the same example two years before (see [8, §1]). A
few years later, Peano proposed another definition of surface area that was
compatible with the Lagrange formula in case of smooth surfaces.

In 1884 Peano observed that the proof of the mean value theorem formu-
lated by Jordan in [22, (1882)] was faulty. In an exchange of messages with
Jordan, the young Peano showed much deeper understanding of the subject
than the famous Jordan (see [7, §1]).

In 1884 Peano showed that the Dirichlet function, conceived as an example
of a function that is out of reach of analytic constructions, is in fact the
double limit of a continuous function of two variables (see Section 3.1).

Also in [9, (1884)] Peano proved that for every sequence of real numbers
{c

n

}

n2N there exists a C

1-function f : R ! R such that f

(n)(0) = c

n

for
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each n 2 N, the result later rediscovered by Borel [3, (1895)] and commonly
called Borel’s theorem (see Besenyei [1, (2014)]).

2.1. Some of Peano’s counter-examples. As we have said, Peano en-
countered numerous inaccuracies and errors in mathematical literature and
provided, with astonishing ease, a long list of counter-examples. He remains
perhaps the champion of counter-examples in the mathematical world. Of
course, it is natural that errors happen to (almost) everyone and papers of
numerous great mathematicians contain, sometimes fecund, errors. Peano’s
rigor was, however, quite exceptional; Bertrand Russell comments in The
Principles of Mathematics [44, (1903), p. 241] that Peano had a rare im-
munity from error. We list below some of Peano’s counter-examples from
Calcolo di↵erenziale e integrale of 1884, to sundry statements of Cauchy,
Lagrange, Serret, Bertrand, Todhunter, Sturm, Hermite, Schlömilch and
others (2).

A. The order of partial derivation cannot be altered in general : if

f(x, y) :=

8
<

:
xy

x

2
� y

2

x

2 + y

2
, if x2 + y

2
> 0

0, if x = y = 0

then f

xy

(0, 0) = �1 and f

yx

(0, 0) = 1 (3).
B. The existence of partial derivatives is not su�cient for the mean value

theorem in two (and more) variables: Peano shows that for

f(x, y) :=

8
<

:

xyp
x

2 + y

2
, if x2 + y

2
> 0

0, if x = y = 0

the mean value formula does not hold (4).

2 In Calcolo di↵erenziale e integrale Peano cites numerous authors, which is exceptional
for textbooks. In order of appearance: Dini, Dedekind, Pasch, Cantor, Harnack, Lips-
chitz, Du Bois-Reymond, Serret, Jordan, Euclides, Leibniz, Joh. Bernoulli, Euler, Dirich-
let, Cauchy, Gilbert, Darboux, Weierstrass, Schwarz, Heine, Poisson, Abel, Mac-Laurin,
Wiener, Sturm, Waring, Tardy, Hoppe, Schlömilch, Most, Gatting, Bertrand, Terquem,
Tardy, Mossa, Teixeira, Fergola, Faà di Bruno, Bolzano, Stolz, Rausenberger, Novi, Cata-
lan, Oliver, Taylor, Lagrange, König, Amigues, Newton, Liouville, Hermite, N.Mercator,
Gregory, Machin, Lindemann, Gergonne, Ampère, Jacobi, Bellavitis, Genocchi, Peano,
Wronski, Trudi, Frobenius, Duhamel, Realis, Laurent, Lacroix, Cayley, Donkin, Baltzer,
Hesse, Sylvester, Rouquet, Todhunter, Pringsheim, Mertens, Hoüel, Könisberger, Crelle,
Clausen, Riemann, Volterra, Archimede, De Zolt and Wallis.

3 Peano mentions other, more complicated counter-examples, for instance, that of Dini
and of Schwarz (1873):

f(x, y) :=

⇢
x

2 arctan y

x

� y

2 arctan x

y

if xy 6= 0
0, if xy = 0.

4 Indeed, both partial derivatives are null at (0, 0), otherwise

f

x

(x, y) =
y

3

(x2 + y

2)3/2
and f

y

(x, y) =
x

3

(x2 + y

2)3/2
.
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C. On the formula of de l’Hôpital: f (0) = 0 = g (0) and lim
x!0

f (x)

g (x)

exists without the existence of lim
x!0

f

0 (x)

g

0 (x)
. Peano proposes a counter-

example, defining f [x] := x

2 sin 1
x

(for x 6= 0) and g(x) := x.

D. A function can attain, on each straight line passing through (0, 0) , a
local minimum at (0, 0) , without attaining its local minimum at (0, 0) (5).
Consider

f (x, y) := (y � x

2)(y � 2x2).

Figure 2. Zero sub-level of f .

The value f(x) is positive if y � 2x2 and if y  x

2; it is negative if x2 

y  2x2. Therefore (0, 0) is neither a local minimum nor a local maximum.
Each straight line L passing through (0, 0) remains in the positivity area of
f on an open interval around (0, 0) , that is, f attains a local minimum on
L.

3. Foundations

The formal language of logic that Peano developed, enabled him to per-
ceive mathematics with great precision and depth. Actually he described
mathematics axiomatically basing the reasoning exclusively on logical and
set-theoretic primitive terms and properties, which was revolutionary at that
time. Logic was for him the common part of all theories.

For every real number t,

f(t, t) =
|t|p
2
, f

x

(t, t) = f

y

(t, t) =
(sgn(t))3

2
p
2

2 {� 1

2
p
2
, 0,

1

2
p
2
}.

Therefore, for x0 := y0 := �1 and h := k := 3, we have

f(x0 + h, y0 + k)� f(x0, y0) =
|x0 + h|� |x0|p

2
=

1p
2

and h

@f

@x

(x0 + #h, y0 + #k) + k

@f

@y

(x0 + #h, y0 + #k) = 2h @f

@x

(x0 + #h, x0 + #h) =

3 (sgn(x0+#h))3p
2

2 {� 3p
2
, 0, 3p

2
} for every real number # 2 [0, 1]; hence, the mean value

formula does not hold.
5 Peano constructs this counter-example of a related statement of Serret: “if df (x, y) =

0, and d

4
f (x, y) (h, k) > 0 for each (h, k) such that d2f (x, y) (h, k) = d

3
f (x, y) (h, k) = 0,

then (x, y) is a local minimum”.
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It should be emphasized that the formal language conceived and used by
Peano was not a kind of shorthand adapted for a mathematical discourse, but
a collection of ideographic symbols and syntactic rules with unambiguous
set-semantics, which produced precise mathematical propositions, as well as
inferential rules that ensured the correctness of arguments.

Semantics was, for him, inherent to syntax, a mathematical point of view
as opposed to that of logicians. In the figure below, we report an excerpt
of Peano’s presentation (in latino sine flexione (6) and Peano’s symbolic
language) of the following Leibniz theorem from 1694: If g, h are functions
from R to R, then a function f from R to R verifies the equality f

0 = g f+h

if and only if

f(x) = e

R
x

0 g

✓
f(0) +

Z
x

0
e

�
R
u

0 g

h(u)du

◆

for every x 2 R.

Figure 3. Formal statement and proof of Leibniz theorem
from Peano’s Formulario mathematico [37, (1908) p. 431].

3.1. Dirichlet function. Dirichlet was probably the first to conceive func-
tions as arbitrary assignments, which need not be expressed analytically,
that is, by algebraic operations, in terms of elementary functions and their
limits. To show the extent of his new concept, he gave in [26, (1829) p. 132],
as an example, the celebrated Dirichlet function, which is the characteristic
function of the irrational numbers �R\Q (7).

6 Latino sine flexione (Latin without inflections), a simplified Latin conceived, for
universal scientific communication, by Peano [35, (1903)].

7 that assigns 0 to the rational numbers and 1 to the irrational numbers.
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In [9, (1884)] Peano shows that, surprisingly, the Dirichlet function is
analytically expressible as double limit of elementary functions

�R\Q (x) = lim
m!1 ' (sin (m!⇡x)) ,

where

'(y) := lim
t!0

y

2

y

2 + t

2
=

(
1 if y 6= 0,

0 if y = 0.

Indeed, if x is rational, say x =
p

q

, then sin (m!⇡x) = 0 for each natural

m � q, so that lim
m!1 ' (sin (m!⇡x)) = 0; on the other hand, if x is

irrational, then m!x is irrational for each natural m and thus sin(m!⇡x) 6= 0,
so that lim

m!1 ' (sin (m!⇡x)) = 1.
Peano adopts Dirichlet’s definition of function in [9, (1884)]; in [37, (1908)]

he defines functions and, more generally, relations as subsets of Cartesian
products. In [38, (1911)], commenting on the freshly published Principia
Mathematica, where relations are primary notions, Peano reiterates his pref-
erence to consider set as a primitive notion and defines functions as partic-
ular relations, as it is commonly done today.

3.2. Reduction of mathematics to sets. Until nineteenth century, there
was a great variety of mathematical objects: numbers, lines, surfaces, fig-
ures, all considered as entities. The language of mathematics was constituted
of a mixture of symbols and of common language. Because of semantic am-
biguity of natural languages, mathematical facts expressed with their aid
are not always univocal.

With Dedekind and Cantor, sets became mathematical objects, while
Peano reduced all the objects and properties to sets. Relations became
subsets of Cartesian products, functions became particular relations and
operations were expressed by means of functions. All this constituted a
conceptual revolution.

In this new framework, two objects x and y are equal if and only if x 2 X

is equivalent to y 2 X for every set X. In other words, Peano implements
the principle of Aristotle “Nam quaecumque de uno praedicatur, ea etiam
de altero praedicari debent”, of Saint Thomas Aquinas “Quaecumque sunt
idem, ita se habent, quod quidquid praedicatur de uno, praedicatur et de alio”
and of Leibniz “Eadem sunt quorum unum in alterius locum substitui potest,
salva veritate”, that we quote after Peano [39, (1915)] and [40, (1916)].

Peano understood the urgent necessity of an unequivocal formal language
to refound mathematics on a solid basis. Starting from 1889, he formalized
a significant part of mathematics of his times.

Mathematical objects are accessible through symbols. Peano introduced
symbols he needed for his formalism of mathematics. Among them

2,[,\,⇢, 9,
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that are now universal. He denoted the sets of natural numbers with N0,
of integer numbers with n, of rational numbers with r (for rational), of real
numbers with q (for quantity), of numerical finite-dimensional Euclidean
space with q

n

and so on (8), and formed all mathematical expressions using
two primitive propositions x 2 y and x = y. Therefore he kept the distinc-
tion between 2 and ⇢, hence between an element x and the corresponding
singleton {x}.

A relevant subject of research activity of Peano and his School (9) con-
cerned definitions in Mathematics, a subject which received and still receives
more attention from philosophers than from mathematicians. Peano used
formal expressions to announce mathematical facts and formal inferential
transformations to prove them. Peano’s symbolic propositions were not
stenographic, but organic, with precise univocal semantic values. Thanks to
this absolute precision of his formalism, Peano could detect errors and pit-
falls, and see the necessity of hypotheses or axioms. For Peano, mathemati-
cal facts were precisely those that can be expressed in terms of set-theoretic
and logical symbols; therefore in [36, (1906)] Peano rejected the paradox of
Richard [43, (1905)], as pertaining to linguistics and not to mathematics.

3.3. Axiom of choice. Peano realized that the principle of infinitely many
arbitrary choices was not guaranteed by the “axioms” traditionally used in
mathematics, when he elaborated a proof of existence of solutions to systems
of ordinary di↵erential equations [33, (1890)] (c.f. [7, §6.2]). His discovery,
that made emerge the Axiom of Choice from mathematical unconsciousness,
was possible because of his logical set-theoretic ideography, conceived and
accomplished for the above proof of existence (10). Peano recognized as le-
gitimate only the principle of determined choices in the case of infinitely
many sets; where, for Peano, “determining an element of a set” meant “es-
tablishing a property which holds only for one element of the set”. Thus
for the specific problem of selecting elements from infinitely many closed
bounded sets of Euclidean space, he chose the greatest element with respect
to a lexicographic order (11).

8 Capital letters R and Q are used by Peano to denote positive rational numbers and
positive real numbers, respectively.

9 The name the School of Peano was given to a group of about fifty Peano’s followers,
among whom were his pupils, assistants and other mathematicians committed to Peano’s
projects. Among most devoted were Giovanni Vailati, Filiberto Castellano, Cesare Burali-
Forti, Alessandro Padoa, Giovanni Vacca, Mario Pieri, Tommaso Boggio and Ugo Cassina
(see Kennedy [24, (1980)], [25, (2006)]).

10 Ingenuous disinvoltura that reigned in the matter before Peano’s discovery, should
not be confused with prefiguration of the Axiom of Choice.

11 For every natural number n � 1 and non-empty compact subset K of Rn, Peano
defines recursively an element !

n

(K) of K in the following way. Let !1(K) := maxK
and let !

n+1(K) be the element (a, b) 2 R ⇥ Rn such that a := !1({x 2 R : there is y 2
Rn such (x, y) 2 K}) and b := !

n

({y 2 Rn : (a, y) 2 K}). Clearly, !

n

(K) is the
greatest element of K with respect to a lexicographic order on Rn given by “(x1, . . . , xn

) ⌧
(y1, . . . , yn) if and only if (x1, . . . , xn

) 6= (y1, . . . , yn) and x

j

< y

j

for j := min{i : x
i

6= y

i

}”.
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After the rediscovery of the axiom of choice by Zermelo in [48, (1904)] (12),
the pertinence of this axiom was discussed by the mathematical community,
among whom Russell and Poincaré had their say, but Peano’s contribution
was forgotten. A promise of Zariski in 1924, to reestablish Peano’s priority
was apparently not kept (see [5, p. 321] for details).

4. Arithmetic

Peano proposed six axioms to define natural numbers. We list them as
follows: the primitive notions N0, 0 and an operation � fulfill the following
axioms:

P0. N0 is a set,
P1. 0 2 N0,

P2. �(n) 2 N0 for every n 2 N0,
P3. if S is a set, 0 2 S and �(S) ⇢ S, then N0 ⇢ S,

P4. � is injective,
P5. � (n) 6= 0 for every n 2 N0.

[. . . ]

Figure 4. Here are Peano’s six axioms of arithmetic as
they appear in Formulario mathematico [37, (1908), p. 27]
(Peano’s comments are in latino sine flexione).

It follows from the axioms of Peano that N0 is infinite in the sense of Peirce
and Dedekind (since the map � : N0 ! N0 is injective but not surjective)
and that N0 is a minimal infinite set (because of the induction principle
P3). In the introduction to Arithmetices principia, nova methodo exposita
[32, (1889)] Peano writes (13)

12 In Zermelo’s Axiom of Choice [27, (1982) pp. 2, 80] Moore writes: “. . . in 1904 Ernst
Zermelo first formulated the Axiom of Choice” and “Peano [1890] was the first to reject
the use of [the principle of] infinitely many arbitrary choices.” Moore seems not to see a
temporal contradiction in a rejection of something that was formulated 14 years later.

13 Translation from Latin is taken from Kennedy [23, (1973)].
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Questions pertaining to the foundations of mathematics, al-
though treated by many these days, still lack a satisfactory
solution. The di�culty arises principally from the ambiguity
of ordinary language. For this reason it is of the greatest
concern to consider attentively the words we use. [...]

I have indicated by signs all the ideas which occur in
the fundamentals of arithmetic, so that every proposition is
stated with just these signs. The signs pertain either to logic
or to arithmetic.

Following Lehrbuch der Arithmetic of Grassmann [10, (1861)], Peano ex-
tended by induction the operation � to those of addition and multiplication.
He was then in a position to extend arithmetic to integers, rational numbers
and real numbers.

Some claim that Peano was beholden to Dedekind for his foundation
of arithmetic. This is, however, not the case, because Peano proceeded
axiomatically, proving, by the way, the independence of his axioms, while
Dedekind proved everything, even unprovable, like the existence of infinite
set. Peano used a completely formal and coherent language, while Dedekind
was often vague (he did not distinguish membership from set inclusion).

5. Vector spaces

5.1. A�ne and vector spaces. Peano firmly maintained the distinction
between points and vectors and so on. He applied the geometric calculus of
Grassmann and refounded axiomatically a�ne spaces and Euclidean geome-
try, based on the primitive notions of point, vector (i.e., di↵erence of points)
and scalar product.

In Calcolo geometrico [30, (1888)] Peano provided a modern definition
of vector space structured by addition and multiplication by scalars, which
fulfill

a+ b = b+ a,(comutativity)

a+ (b+ c) = (a+ b) + c, m(na) = (mn)a,(associativity)

m(a+ b) = ma+mb, (m+ n)a = ma+ na,(distributivity)

1a = a, 0a = 0,(normalization)

for every vectors a, b, c, and scalars m,n. That concept was implicit in the
work of Grassmann [11, (1862)] and based on the notions of sum, di↵erence
and multiplication by scalars.

5.2. Norms. In [31, (1888)] Peano introduced numerical Euclidean space
Rn for arbitrary natural n (14). He recognized the equivalence of the Eu-
clidean norm in Rn with the l1-norm. Subsequently he defined the norm of

14 Reid [42, (1955)], reviewing Murray and Miller [28, (1954)] writes: “To the reviewer
it appears highly regrettable that the authors have not seen fit to introduce vector and
matrix notation prior to the last chapter, where such is used in a limited fashion; certainly
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linear maps F between Euclidean spaces by

kFk := max
x 6=0

kFxk

kxk

,

which constituted the first occurrence of the Banach operator norm. Fur-
thermore he established its basic properties and its compatibility with the
linear operator algebra, for example,

kGFk  kGk kFk .

He compared it with the Euclidean norm in the corresponding space of
matrices and relates it to the eigenvalues of F T

F, where F T is the transposed
operator of F. He also gave the Liouville formula:

det(eA) = e

trA
.
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eć o dziedzictwie Peany. In
W. Wi

,

es law, editor, Dzieje Matematyki Polskiej II, pp. 39-51. Instytut Matematy-
czny, Uniwersytet Wroc lawski, Wroc law, 2013.

[7] S. Dolecki and G. H. Greco. The astonishing oblivion of Peano’s mathematical legacy
(II): Analysis and Geometry. Forthcoming, 2015.

[8] S. Dolecki and G. H. Greco. The astonishing oblivion of Peano’s mathematical legacy
(III): Measure theory and topology. Forthcoming, 2015.

[9] A. Genocchi. Calcolo di↵erenziale e principii di calcolo integrale pubblicato con ag-
giunte dal Dr. Giuseppe Peano. Fratelli Bocca, Torino, 1884.

[10] H. G. Grassmann. Lehrbuch der Arithmetik für höhere Lehranstalten. Enslin, Berlin,
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