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Abstract. The formulations that Peano gave to many mathematical
notions at the end of 19th century were so perfect and modern they
have become standard today. A formal language of logic that he created,
enabled him to perceive mathematics with great precision and depth. He
described mathematics axiomatically basing the reasoning exclusively
on logical and set-theoretic primitive terms and properties, which was
revolutionary at that time. Yet numerous Peano’s contributions remain
either unremembered or underestimated.

This is the last of our three papers (c.f., [8],[9]) about Peano’s forgotten
heritage.

Figure 1. Giuseppe Peano (1858-1932)

1. Surface area

Serret defined in [38, (1880) p. 296] the area of a surface as a limit of
the areas of inscribed polyhedral surfaces. In 1882 Peano observed that this
definition is ambiguous and that in the case of the lateral surface of a circular
cylinder (of height H and of radius R), it is possible to choose a sequence

Date: February 23, 2015. Submitted to The Mathematical Intelligencer .
The authors are grateful to Professors David L. Russell (Virginia Polytechnic Institute

and State University) and Iwo Labuda (University of Mississippi, Oxford) for their precious
advice on presentation of this paper.

1



2 SZYMON DOLECKI AND GABRIELE H. GRECO

of polyhedral surfaces fulfilling Serret’s condition such that the mentioned
limit is anything greater than or equal to 2⇡RH (see Peano [31, (1890)] and
Lebesgue [22, (1902)]).

Here is a description of Peano’s construction [35, (1902-03), pp.300-301].
Given integers n and m, divide the circular cylinder into n circular cylinders
of height H

n and inscribe in each circular base of these cylinders a regular
m-gon in such a way, that the vertices of each polygon are rotated by ⇡

m
with respect to the adjacent ones. Consider the triangles, the vertices of
which are two consecutive vertices of the polygon inscribed in a base and one
vertex is that of a polygon inscribed in a neighboring base, lying vertically in
between the first two vertices. These 2mn isosceles triangles are the facets
of a polyhedron. The circular cylinder is approximated by this inscribed
polyhedron that resemble a traditional Venetian lantern.

Figure 2. A Venetian lantern taken from a course of C.
Hermite [15, (1883) p. 36].

The length of the bases of these isosceles triangles is 2R sin ⇡
m and the

altitude is r
R2(1� cos

⇡

m
)2 +

H2

n2
.

As 1 � cos ⇡
m = 2 sin2 ⇡

2m , the area of the polyhedral surface of 2mn facets
is equal to

(1) A (n,m) := 2mnR sin
⇡

m

r
4R2 sin4

⇡

2m
+

H2

n2
.

When n and m tend to 1, the limit of A(n,m) depends on the ratio of n
and m. For example, if n = m, then limm!1A (m,m) = 2⇡RH, but if, for
instance, n = m3, then limm!1A(m3,m) = 1.

Peano identified a principal error of Serret’s method, that is, that a vari-
able plane passing through three non-collinear points of a surface S, does
not necessarily tend to the tangent plane of S at a point x, when these three
points tend to x (see Peano [31, (1890)]).
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When Peano reported his discovery to Genocchi, he was told that a similar
construction had already been discovered by H. A. Schwarz two years earlier
(see Kennedy [20, (1980)], [21, (2006)]).

Peano did not rest on his laurels. In Applicazioni geometriche [30, (1887)]
he proposed a definition of surface area that coincides with the Lagrange
area formula in case of regular Cartesian surfaces (1):

(2)

ZZ

D

p
1 + krf(x, y)k2 dx dy.

Peano’s construction was the following: fix a plane L and, for an arbitrary
finite partition of the surface S, move arbitrarily but rigidly each element
of the partition and project it orthogonally onto L. Then take the sum of
so obtained plane areas. This sum depends on the partition and on the
positions of its elements after the transport. The supremum of so obtained
sums over all the partitions and all the positions, defines the area of S (see
Greco, Mazzucchi, Pagani [11])

2. Concept of plane measure

In [29, (1883)] Peano presented concepts of external and internal area

and, what is most considerable, that of measurability (2) for planar sets, ten
years before the work of Jordan [17, (1892)]. In introducing the inner and
outer area of planar sets as well as in defining surface area, Peano was also
influenced by Archimedes’s approach to calculus of area, length and volume
of convex figures. At that time a concept of measure was commonly used,
but was not defined. (3)

Peano was the first to prove that a positive function f of one variable is
integrable if and only if the positive hypograph

hypo+ f := {(x, r) : 0  r  f(x)}
of f is measurable. If this is the case, Peano showed that the integral of f
is equal to the area of hypo+ f .

Peano considers finite unions of polygons that cover a given planar set
A and finite unions of polygons that are included in A. Denote by P the
collection of the finite families of polygons. The infimum over P 2 P of

(3)
X

P2P area(P )

such that
S

P2P P � A, defines the external area of A, and the supremum
over P 2 P of (3) such that

S
P2P P ⇢ A and P consists of non-overlapping

polygons, defines the internal area of A. If these two values coincide, A is
said to be measurable, and the common value is called the area of A.

1 That is, the graphs of C1-functions f
2 Peano does not use the term measurability.
3 After 1883, the Inhalt (content), which corresponds to external measure, was intro-

duced in works by Stolz [39, (1884)], Cantor [1, (1884)], Harnack [12, (1885)].
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This choice of Peano of using polygonal sets in the definitions of both
external and internal area, enables one to immediately infer that the measure
is isometrically invariant and does not depend on coordinate systems. The
corresponding construction of Jordan, using grills of rectangles, requires a
proof of such invariance.

3. Measure theory

The interest of Peano in measure theory was rooted in his criticism of the
definition of area (1882), of integral (1883) and of derivative (1884).

This criticism led him to an innovative measure theory, which was ex-
posed systematically and fully in a chapter of Applicazioni geometriche [30,
(1887)], where he refounded the Riemann integral by means of inner and
outer measures, as he anticipated in his juvenile work [29, (1883)]. Peano
in [30, (1887)] and Jordan in [17, (1892)] and in the second edition of Cours
d’Analyse [18, (1893)] developed well known concepts of classical measure
theory, like measurability and change of variables and proved several funda-
mental theorems, with some methodological di↵erences between them.

The mathematical tools employed by Peano were really advanced at that
time (and perhaps are even now), both on a geometrical and a topological
level. Peano used extensively the geometric vector calculus introduced by
Grassmann. The geometric notions included oriented areas and volumes
(called geometric forms).

Peano’s measure theory was based on solid grounds of logic, set theory
and topology. For example, he introduced interior and exterior points in
connection with internal and external measures.

3.1. Abstract measures. The most innovative ingredient of the approach
of Peano is the introduction of abstract measures and their di↵erentiation.

We use the term abstract measure to designate a“distributive” set function

of Peano, that is, a mapping µ : M ! R+ where M is a distributive family
of subsets of a given set X (see next Section 4.2) such that

µ(A0 [A1) = µ(A0) + µ(A1),

provided that µ(A0 \A1) = 0, in particular if µ is finitely additive.
Among distributive set functions he considered outer measure, inner mea-

sure, upper integral and lower integral, which he defined as, respectively, the
least upper bound of the upper Riemann sums and the greatest lower bound
of the lower Riemann sums. Then Peano defined the integral with respect to
a finitely additive set-function and the derivative of a measure with respect
to another measure (see Greco, Mazzucchi, Pagani [10, (2010)]).

Peano observes that the outer measure of a set is the sum of the inner
measure of this set and of the outer measure of its boundary

µ+(A) = µ�(A) + µ+(@A),

and thus A is measurable whenever µ+(@A) = 0.
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Thomas Hawkins wrote in [14, (1975)]: “The [Peano measure] theory is
surprisingly elegant and abstract for a work of 1887 and strikingly modern
in its approach.”

4. Topology

Peano’s interest in general topology was considerably motivated by its
founding role in measure theory.

4.1. Interior and closure. The notions of interior, exterior and bound-
ary points of subsets of Euclidean space existed informally in mathematical
literature before 1887, but were precisely defined for the first time in Appli-

cazioni Geometriche [30, (1887)], where x is said to be an interior point of
a subset A of Euclidean space X if there is r > 0 such that B(x, r) ⇢ A; an
x is called an exterior point of A if it is an interior point of X \A.

An x is a boundary point (4) if it is neither exterior nor interior. Subse-
quently, Peano defines the interior intA of A as the set of interior points,
and the closure of A by

clA := {x 2 X : dist(x,A) = 0} ,
and relates it to the notion of closed set of Cantor [1, (1884)], that is, clA
is the least closed set that includes A.

These fundamental topological concepts reappeared several years later in
the second edition of Cours d’Analyse [18, (1893)] of Jordan.

4.2. Distributive and antidistributive families. Miscellaneous distribu-
tive properties were studied in Applicazioni geometriche [30, (1887)]. Peano
formalized the notion of distributive family, used implicitly by Cantor in [1,
(1884)]. A family H of subsets of X is called distributive on X if

(D) H0 [H1 2 H () H0 2 H or H1 2 H.

Among examples of distributive families given by Peano were the family
of infinite sets and that of unbounded subsets of Euclidean space.

He called a family A (of subsets of X) antidistributive on X if

(I) A0 [A1 2 A () A0 2 A and A1 2 A.

Such families are nowadays called ideals. Peano’s examples comprise the
family of finite sets and that of bounded subsets of Euclidean space.

A family F of subsets of a set X is called a filter on X (see H. Cartan
[3, 2, (1937)]) if

(F) F0 2 F and F1 2 F () F0 \ F1 2 F
We include here neither the usual non-degeneracy condition: ? /2 F (the
only filter F on X fulfilling ? 2 F is the power set 2X of X) nor the
non-emptiness: F 6= ?.

4 In Peano terminology, limit point.
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Denote by D the class of distributive families on X, by I the class of
antidistributive families on X and by F the class of filters on X. In order
to relate the properties (D), (I) and (F), consider three unary operations
2X ! 2X , namely, for A ⇢ 2X ,

A# := {H ⇢ X : 8
A2A

H \A 6= ?},(grill)

Ac := {H ⇢ X : H /2 A} ,(complementary)

A[ := {X \A : A 2 A} .(complementation)

Then

(4) D = {F# : F 2 F} = {Ac : A 2 I}
and

I = {Hc : H 2 D} = {F [ : F 2 F}, F = {H# : H 2 D} = {A[ : A 2 I}.
The grill was introduced by Choquet [5, (1947)], who noticed thatH is the

grill of a filter if and only if (D) holds, and so rediscovered the distributive
property.

4.3. Compactness. In [30, (1887)] Peano cites Cantor [1, (1884) p. 454] for
the following theorem (5)

Theorem 1. Let S be a closed bounded non-empty set of Euclidean space

X. If H is a distributive family of subsets of X and S 2 H, then there exists

a point x 2 S, such that each neighborhood of x belongs to H.

Peano restates Theorem 1 in terms of antidistributive families:

Theorem 2. Let S be a closed bounded non-empty subset of Euclidean space

X. If A is an antidistributive family of subsets of X and for each x 2 S
there is a neighborhood of x belonging to A, then S 2 A.

Let Q be an arbitrary family of subsets of an Euclidean space X. Clearly,
the family of the subsets of finite unions of elements of Q is an antidistribu-
tive family on X. From Theorem 2 it follows that for a closed bounded set
S such that S ⇢ S

A2Q intX A, there is a finite subfamily of A1, A2, . . . , An

of Q such that S ⇢ A1 [ A2 [ . . . [ An. Hence Theorem 2 amounts to the
Heine-Borel theorem:

Theorem 3. Let S be a closed bounded subset of Euclidean space X. Each

open cover of S has a finite subcover of S.

Let us give a proof of the equivalence of Theorems 1 and 2.

5 In order to simplify the formulation, we add the assumption that S is closed. In his
proof, Peano, like Cantor, considers successive partitions of S of diameter tending to 0;
he mentions that this method was used by Cauchy.
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Proof. Let N (x) stand for the neighborhood filter of x and let S be a closed
bounded non-empty set. Theorem 1 says that

(5) 8
H2D

(S 2 H =) 9
x2S

N (x) ⇢ H ).

By (4), D = {Ac : A 2 I}; hence (5) becomes

8
A2I

(S 2 Ac =) 9
x2S

N (x) ⇢ Ac ),

that is,

(6) 8
A2I

�
( 8
x2S

9
V 2N (x)

V 2 A) =) S 2 A�
.

On the other hand, Theorem 2 amounts to (6).

By (4), D = {F# : F 2 F}; hence (5) yields

(7) 8
F2F

(S 2 F# =) 9
x2S

N (x) ⇢ F#).

On recalling that, by definition, adhF consists of x 2 X such that “Q \
F 6= ? for every Q 2 N (x) and F 2 F” (in other words, N (x) ⇢ F#), (7)
becomes:

Theorem 4. Let S be a closed bounded non-empty set of Euclidean space

X. If F is a filter on X and S 2 F#
, then S \ adhF 6= ?.

It is amazing that in the eighties of the nineteenth century Peano routinely
used as a matter of fact two dual properties of abstract compactness, one
of which he got from Cantor [1, (1884)]. The definition of “compactness”
by Heine (1872) came earlier, while those of Borel (1895), Lebesgue (1902),
Vietoris (1921) and Alexandrov and Urysohn (1923) were subsequent to
Cantor and Peano.

Zermelo seems to be the only one who recognized at that time the impor-
tance of Peano’s distributive and antidistributive families in the context of
compactness [41, (1927)].

Peano considered the Weierstrass theorem as an immediate corollary of
Theorem 1.

Corollary 5. A continuous real-valued function on a closed bounded set

attains its minimum and maximum.

It is interesting to see Peano’s use of distributive families in its proof.

Proof. The case of maximum. Let f be a real function continuous on a
closed bounded set S. Consider the family H of subsets of S such that
H 2 H whenever sup f (H) = sup f (S) and notice that H is distributive.
By Theorem 1, there exists x 2 S such that

sup f (S) = infV 2N (x) sup f (V ) .

As the function f is continuous, its upper limit at each point is equal to its
value at that point, that is, infV 2N (x) sup f (V ) = f(x).
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Although the framework remains that of Euclidean space, the method is
valid for a continuous function on a compact subset of a topological space.

Peano applied the corollary above for f = dist(·, X \O) in a metric space,
obtaining the following

Proposition 6. If F is a compact set and O is an open set such that F ⇢ O,
then there exists r > 0 such that B (F, r) := {x : dist(x, F ) < r} ⇢ O.

5. Differentiation of measures

By retracing research on “grandeurs coexistentes” (coexistent magnitudes)
by Cauchy [4, (1841)], in Applicazioni geometriche del calcolo infinitesimale

[30, (1887)] Peano defined the “density” (strict derivative) of a “mass” (a
distributive set function) with respect to a “volume” (a positive distributive
set function), proved its continuity (whenever the strict derivative exists)
and showed the validity of the mass-density paradigm: “mass” is recovered
from “density” by integration with respect to “volume”.

It is remarkable that Peano’s strict derivative provided a consistent foun-
dation for the concept of “infinitesimal ratio” between two magnitudes, suc-
cessfully used since Kepler. In this way the classical (pre-Lebesgue) measure
theory reached a complete and definitive form in Chapter V of Peano’s Ap-
plicazioni geometriche [30, (1887)] (6).

In order to grasp the essence of Peano’s contribution and to compare
it with analogous results by Cauchy, Lebesgue, Radon and Nikodym, we
present it in a particular significant case.

Peano’s strict derivative of a set function (for instance, the “density” of
a “mass” µ with respect to the “volume”) at a point x̄ is computed, when
it exists, as the limit of the quotient of the “mass” with respect to the
“volume” of a cube Q, when Q ! x̄ (that is, the supremum of the distances
of the points of the cube Q from x̄ tends to 0). In formula, Peano’s strict
derivative gP (x̄) of a mass µ at x̄ is given by:

(8) gP (x̄) := lim
Q!x̄

µ(Q)

voln(Q)
.

On the other hand, the Cauchy derivative gC(x̄) of a mass µ at x̄ [4,
(1841)] is obtained as the limit of the ratio between “mass” and “volume”
of a cube Q when Q ! x̄ and x̄ 2 Q, that is,

(9) gC(x̄) := lim
Q!x̄
x̄2Q

µ(Q)

voln(Q)
.

6 A pioneering role of that book is remarked by J. Tannery [40, (1887)]: “Chapter V is
titled: Geometric magnitudes. This chapter is probably the most relevant and interesting,
the one that marks the di↵erence of the Book of Peano with respect to other classical
Treatises: definitions concerning sets of points, exterior, interior and limit points of a
given set, distributive functions (coexistent magnitudes in the sense of Cauchy), exterior,
interior and proper length (or area or volume) of a set, the extension of the notion of
integral to a set, are stated in an abstract, very precise and very clear way.”
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Observe that (9) is analogous to derivative, (8) to strict derivative [9].
Lebesgue’s derivative of set functions was computed à la Cauchy. Lebesgue

considered finite �-additive and absolutely continuous measures as “masses”,
while Peano contemplated distributive set functions. Lebesgue’s derivative
exists (i.e., the limit (9) exists for almost every x̄), it is measurable and the
reconstruction of a “mass” as the integral of the derivative is assured by
absolute continuity of the “mass” with respect to volume. On the contrary,
Peano’s strict derivative need not exist, but when it does, it is continuous
and the mass-density paradigm holds:

µ(Q) =

Z

Q
gP d voln .

The constructive approaches to di↵erentiation of set functions correspond-
ing to the two limits (8) and (9) are opposed to the approach given by Radon
[37, (1913)] and Nikodym [28, (1930)], who define the derivative in a more
abstract and wider context than those of Lebesgue and Peano. As in the
case of Lebesgue, the existence of a Radon-Nikodym derivative is assured
by assuming absolute continuity and �-additivity of the measures.

6. Peano’s filling curve

Hausdor↵ wrote in Grundzüge der Mengenlehre [13, (1914)] of Peano’s
filling curve: this is one of the most remarkable facts of set theory, the dis-

covery of which we owe to G. Peano (7). Today this fact is considered as
topological and is a consequence of the Hahn-Mazurkiewicz theorem (1913-
14) saying that each compact connected locally connected metric space is a

continuous image of the unit interval.

Invited by Felix Klein to publish in Mathematische Annalen, Peano sub-
mitted [32, (1890)], in which he proved the existence of a continuous map
from the interval [0, 1] onto the square [0, 1]⇥ [0, 1] .

Figure 3. The figure representing the second approxima-
tions of Peano’s curve as it appears in Peano’s Formulario
mathematico [36, (1908) p. 240].

In order to construct such a map, he used the ternary representation of
each element t of [0, 1] and transformed it into ternary representations of
x (t) 2 [0, 1] and y (t) 2 [0, 1] , that is, of an element of [0, 1]⇥ [0, 1]. Because

7 Das ist eine der merkwürdigsten Tatsachen der Mengenlehere, deren Entdeckung wir
G. Peano verdanken.
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the sought map needs to be continuous, Peano’s construction is necessar-
ily more sophisticated than that of Cantor, which established a bijection
between [0, 1] and [0, 1]⇥ [0, 1] .

He defined first an involution k : {0, 1, 2} ! {0, 1, 2} by k (0) := 2, k (1) :=
1, k (2) := 0. In particular, kn (a) = a if n is even and kn (a) = k (a) if n is
odd. Then he defined his curve explicitly by

bn = ka2+a4+···+a2n�2 (a2n�1) ,

cn = ka1+a3+···+a2n�1 (a2n) .

The vertices of the three polygonal lines inscribed in Peano’s curve in the
figure below, are calculated at 0, 1 and, respectively, at a1a21, a1a2a3a41
and a1a2a3a4a5a61, where a1, a2, a3, a4, a5, a6 2 {0, 1, 2} and 1 stands for
the periodic 1.

Figure 4. The first three approximations of Peano’s curve
corresponding to first digits of the ternary representations.

Peano observes that his curve is (and even its components are) nowhere
di↵erentiable. This fact is obvious, because the image of each segment of
the n-th subdivision of [0, 1] by Peano’s curve is equal to the corresponding
square of the n-th subdivision of [0, 1]⇥ [0, 1].

Peano’s original construction was not illustrated by any figure. Solicited
by Klein, David Hilbert published a note [16, (1891)] on Peano’s curve (see
the figure below), presenting a variant based on binary representations. He
described a Cauchy sequence of polygonal lines (for the uniform convergence)
of curves, hence convergent to a continuous map, the image of which is dense
by construction. On the other hand, it is also closed (hence surjective), as
the image of a compact set by continuous map.

Figure 5. The first three approximations of Hilbert’s, as it
appears in Hilbert [16, (1891)]].
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Peano himself concedes that he conceived the filling curve as a counterex-
ample to commonly di↵used ideas of curve, for instance, that the area of a
curve is null (8).

7. Sweeping-tangent theorem

The fashionable sweeping-tangent theorem of Mamikon says that the area

of a tangent sweep of a curve is equal to the area of its corresponding tangent

cluster (see Apostol, Mnatskanyan [25, (2008)], [23, (2002)], [24, (2002)] and
the figures below).

Figure 6. The three figures have the same area, because the
first two are swept by the same tangent vector to the inner
ellipsis and have the third figure as tangent cluster. The
areas marked by the same letter have the same area as well.

This theorem, first published by Mamikon A. Mnatskanyan in [26, (1981)],
has numerous applications, as it enables one to obtain the areas of compli-
cated figures almost without calculation, by reducing the problem to that
of the area of some simple figures.

In [11] Greco, Mazzucchi and Pagani discovered with surprise that in
Applicazioni geometriche [30, (1887) p. 242] (see the figure below) and in
Lezioni di analisi infinitesimali [33, (1893) pp. 225-226] Peano considerably
generalizes Mamikon’s theorem. In fact, Peano uses the Grassmann external
algebra to give a formula for the area of plane figures that are described by

a segment AB of variable length that never passes twice through the same

point, and, consequently, Peano analyzes the following four special cases (of
which Mamikon’s theorem corresponds to 3):

(1) A moves along a straight line and the angle of AB with that line is
constant;

8 Peano had occasional epistolary exchange with Jordan: two letters from Peano to
Jordan (from 1884 and 1894) are known, while no letter from Jordan to Peano has been
found. In spite of their familiarity, in 1894 in L’intermédiare des mathématiciens [19,
(1894)] Jordan asks if there exists a curve of undetermined area. Peano replies in [34,
(1896)] that if one joins the ends of his curve with those of a rectifiable curve lying outside
the square, then the di↵erence between the outer and inner measures of the set inside the
curve is equal to the area of the square.
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(2) A is fixed;
(3) AB is tangent at A to the curve described by A (see the figure

below);
(4) AB is of constant length and normal to the curve described by its

midpoint.

Figure 7. The two figures have the same area, as they ap-
pear in Peano’s Applicazioni geometriche [30, (1887) p. 242].

Figure 8. The two figures have the same area, as they
appear in Peano’s Lezioni di analisi matematica [30, (1893)
pp. 225-6].
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8. Ubi maior minor cessat

It is a typical attitude of a mathematician to distinguish important from
unimportant and, definitively, not to investigate nor to refer to what is
judged unimportant, although such a judgement is often unjustified. There-
fore some works are shadowed by others that appear more fashionable. For
example, axiomatic and formal refoundation of geometry started by Pasch,
continued by Peano and his follower Pieri, was forgotten, because Hilbert’s
accomplishment of Euclid’s geometry appeared easier and thus more attrac-
tive (9). Similarly, although Peano’s di↵erentiation of “measures” (1887)
preceded that of Lebesgue (1910), Peano’s achievement is practically ig-
nored. Lebesgue did not mention Peano’s theory, although he must have
been aware of it, because he quoted works of Vitali and Fubini who am-
ply used it (see [10, (2010)]). Frege would probably remained unknown for
a long time without the work of foundation and di↵usion of mathematical
language (i.e., logical and set-theoretic ideography) by Peano. And even if
Russell refers to Peano as his inspiration many times, the contribution of
Peano is either unremembered or underestimated.

Some influential mathematicians writing about history did disservice to
the memory of Peano, principally because they did not know well enough the
things on which they reported. For example, Dieudonné in [6, (1983)] denied
any logical value of Peano’s definitions concerning limits and sets (see [10,
(2010)]). This was also the case of several historians of mathematics, who are
in fact historiographers, writing without knowledge of primary sources. We
have already mentioned (see Section 6.2 of [9]) those debating about Peano’s
proofs in the theory of di↵erential equation apparently beyond their grasp.

Other historians, by labeling certain mathematicians as “opposed to pro-
gress”, discourage one from studying their point of view, as “the right his-
torical perspective” is that of progress. For instance, Moore in [27, (1982)]
eulogizes Zermelo (1904) who “first formulated the Axiom of Choice” and
stigmatizes Peano (1890) who was “the first to reject the principle of infin-
itely many arbitrary choices” (that is, the Axiom of Choice).

In preceding writings (see [7, (2011)]), we mentioned the denigration of
Peano by his colleagues and their followers.

It looks like the perceived oblivion is due to a conjugation of several
factors, as the natural role of fashion, the di�culty in grasping his innovatory
thoughts, the laxity of those reporting on his work, and denigration.

References
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