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Abstract. The formulations that Peano gave to many mathematical
notions at the end of 19th century were so perfect and modern they
have become standard today. A formal language of logic that he created,
enabled him to perceive mathematics with great precision and depth. He
described mathematics axiomatically basing the reasoning exclusively
on logical and set-theoretic primitive terms and properties, which was
revolutionary at that time. Yet numerous Peano’s contributions remain
either unremembered or underestimated.

This paper is a continuation of [8] in which we commenced to delineate
what is more or less ignored about Peano’s heritage.

Figure 1. Giuseppe Peano (1858-1932)

1. Dispute about the mean value theorem

In the nineteenth century Nouvelles Annales de Mathématiques published
letters and short notes, o↵ering a forum to the mathematical community.
In a letter [31, (1884)] to Nouvelles Annales, Peano observed that the proof
of the mean value theorem given by Jordan in his Cours d’Analyse [22,
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(1882)] was faulty. Mind that, at that time, Peano was a young assistant,
while Jordan was a famous professor almost twice as old as Peano. On the
other hand, it is impressive that an easy basic fact, which is today taught in
freshmen calculus courses, constituted a di�culty for a great mathematician
like Jordan. The mean value theorem is usually formulated as follows: If a
real function f is continuous in [a, b] and di↵erentiable in (a, b) , then there

is c 2 (a, b) such that

f (b)� f (a) = f

0 (c) (b� a) .

In his proof, Jordan divides the interval to subintervals a = a0 < a1 <

. . . < a

n�1 = b, of diameter tending to 0, and claims that the di↵erences

(1)
f (a

r

)� f (a
r�1)

a

r

� a

r�1
� f

0 (a
r�1)

tend also to 0. Peano’s example f(x) := x

2 sin
1

x

for x 6= 0 and f(x) := 0

for x = 0,

Figure 2. f(x) := x

2 sin
1

x

if x 6= 0.

with appropriately chosen a

r

and a

r�1 tending to 0, shows that (1) does not
hold in general.

Peano indicated that Jordan’s claim was true under the assumption of
continuous di↵erentiability of f and added that the mean value theorem
could be easily proved without that assumption. Jordan replied that Peano’s
objections were founded, and that, [Jordan] implicitly assumed that

(2)
f (x+ h)� f (x)

h

!
h

f

0 (x) uniformly as h tends to 0

in the interval [a, b] .Moreover he asked Peano to provide a proof without the
continuity of the derivative, as he did not know a satisfactory one (1). In [32,

1 At this point, Ph.Gilbert of Louvain intervenes in the exchange, saying that the
request of professor Jordan was done with archness, because the mean value theorem
without the continuity of derivative is false. The example he proposes to support his claim
is (of course!) wrong. In his answer [32, (1884)], Peano gives the (today standard) proof
of Bonnet, using the theorems of Weierstrass and Rolle, and mentions that satisfactory
proofs can be found in the books of Serret, Dini, Harnack and Pasch.
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(1884)] Peano remarked that (2) amounted to the continuous di↵erentiability
of f and that a correct proof of the mean value theorem was due to Bonnet.

2. Differentiability

The definition of derivative at a point x of a real-valued function defined
on a subset of Euclidean space appeared already in Applicazioni geometriche

[34, (1887)] and was generalized in Formulario mathematico [47, (1908)] to
a function valued in Euclidean space. A function f : U ! Rm

, where U is a
subset of Rn and x is an accumulation point of U, is said to be di↵erentiable
at x if there exists a linear map L : Rn ! Rm (said, total di↵erential) such
that

(3) lim
U3y!x

f(y)� f(x)� L(y � x)

ky � xk = 0.

It was Thomae who pointed out in [60, (1875)] that di↵erentiability was
not equivalent to partial di↵erentiability. After Thomae, the existence of
a total di↵erential was assured by the existence and continuity of partial
derivatives, that is, by strict di↵erentiability (see below). Peano’s definition
set the derivative free from a particular coordinate system, thus allowed it
to pass from one coordinate system to another.

It should be stressed that Peano’s definition appeared in a rigorous mod-
ern form (3). On defining di↵erentiability Peano referred to the concepts
of Grassmann [12, (1862)] and of Jacobi [21, (1841)], but in fact they were
more rudimentary (radial derivative and Jacobian matrix). As the domain
of f need not be the whole of Euclidean space, in general the linear operator
L in (3) is not unique; in the case of uniqueness Peano called L the deriv-

ative of f at x and denoted it by Df(x). This definition contrasted with
the standard language of mathematical definitions in that epoch, which was
usually informal and often vague.

Today (3) is universally used in the case where x in the interior of U (so
that L is unique) and Df(x) is commonly called the Fréchet derivative of f
at x, although Fréchet gave its informal (geometric) definition only in [10,
(1911)]. (2)

In Peano [41, (1892)] a function f from an interval U to R is said to be
strictly di↵erentiable at x 2 U if

(4) lim
U3y,z!x

f(y)� f(z)

y � z

= f

0(x),

and from which it is observed that strict di↵erentiability in U amounts to
continuous di↵erentiability.

2 One month later Fréchet published another note [11, (1911)], acknowledging contri-
butions of Stolz (1893), of Pierpoint (1905) and of W. H. Young (1910) (but not that
of Peano), the authors who apparently also ignored Peano’s contribution and considered
merely the case where x is an interior point of U .
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In [35, (1888) p. 133] Peano gave the following mean value theorem for
vector-valued functions f of one variable: if f has an (n + 1)-st derivative
f

(n+1) on [t, t+h], then there exists an element k 2 cl conv f (n+1)([t, t+h]) (3)
such that

f(t+ h) = f(t) + hf

0(t) + · · ·+ h

n

n!
f

(n)(t) +
h

n+1

(n+ 1)!
k.

Here is another surprise, because the concept of convex hull has usually been
attributed to Minkowski [26, (1896)]. (4)

Moreover, Peano extended the notion of derivative by replacing the limit
of the di↵erence quotient (of y at t) by its adherence (5)

Dg y(t) := adh
h!0

y(t+ h)� y(t)

h

,

and he employed it to define approximate solutions of

(5) y

0 = f(t, y), y (t0) = y0

in the proof of the existence of solutions of a system of di↵erential equations
that appeared in Formulario mathematico [47, (1908)] (see next Section
6.2). The extended derivative Dg y(t) is a set, and if y is di↵erentiable it is
a singleton.

A vector function y is called an approximate solution of (5) (on [t0, t1]) if
there exists an " > 0 such that

(6) Dg y(t) ⇢ f(t, y(t)) +B(0, ") and lim sup
h!0

����
y(t+ h)� y(t)

h

���� < 1

for each t0  t  t1. Peano’s proof of the existence of solutions of (5) used
the following mean value property of approximate solutions:

y(t1)� y(t0)

t1 � t0
2 cl conv

✓[
t2[t0,t1]

Dg y(t)

◆
. (6)

The introduction of extended derivative and its application in the context
of di↵erential equations attests to a remarkable ease with which Peano was
able to introduce concepts in order to adequately approach mathematical
problems.

In Peano [40, (1892)] a polynomial function a0+a1(x�x0)+ . . .+a

n

(x�
x0)n is called a development of f of rank n with respect to powers of x� x0

if

(7) lim
x!x0

f (x)� (a0 + a1(x� x0) + . . . a

n

(x� x0)n)

(x� x0)
n

= 0 (7).

3 Here “conv” stands for the convex hull and “cl conv” for the closed convex hull.
4 In 1889 Peano [37] introduced the modern notion of convex set to axiomatize

geometry.

5 adh
h!0 '(h) :=

⇢
v : 9

{hk}k
(lim

n!1 h

k

= 0 and v = lim
n!1 '(h

k

))

�

6 Therefore, if f in (5) is continuous, then each approximate solution is locally Lipschitz.
7 Peano gave the rules for the developments of sums, products and compositions.
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This equality can be rewritten in such a way that the n-th coe�cient is given
by

a

n

= lim
x!x0

f (x)� (a0 + a1(x� x0) + . . . a

n�1(x� x0)n�1)

(x� x0)
n

,

which leads to the Peano generalized derivative of order n, that is,

a

n

n!.

If f (n) (x0) exists, then a

n

n! = f

(n) (x0) , but even a discontinuous function
can have a development. For example,

f

n

(x) :=

⇢
x

n+1
✓

�
1
x

�
, if x 6= 0,

0, if x = 0,

where ✓(t) is the fractional part of t, has a development of rank n, and

f1 (x) :=

⇢
exp(� 1

x

2 )✓
�
1
x

�
if x 6= 0,

0, if x = 0,

has developments of arbitrary rank; they both have discontinuities in each
neighborhood of 0 (8).

If f is n times di↵erentiable on [x0, x0 + h] and f

(n+1) (x0) exists, Peano
[38, (1889)] proved that there exists ⇠ 2 [x0, x0+h] such that the remainder
of rank n+ 1 of the Taylor formula is

⇣
f

(n) (⇠)� f

(n) (x0)

⇠ � x0
� f

(n+1) (x0)
⌘

h

n+1

(n+ 1)!
.

3. Lower and upper limits of variables sets

Generalizing the notions of limit of straight lines, planes, circles and
spheres (that depend on a parameter) considered as sets, Peano defined
two limits of variable figures (in particular, curves and surfaces).

A variable figure (or set) is a family, indexed by the reals, of subsets A
�

of an a�ne Euclidean space X, and the lower limit of a variable figure was
given in [34, (1887)] by

Li
�!+1A

�

:= {y 2 X : lim
�!+1 d(y,A

�

) = 0}.
In the last two editions of Formulario mathematico [46, (1903)], [47,

(1908)] the upper limit of a variable figure was defined by

Ls
�!+1A

�

:= {y 2 X : lim inf
�!+1 d(y,A

�

) = 0},
and also expressed as

Ls
�!1A

�

=
\

n2N
cl
[

��n

A

�

.

8 Indeed, lim
x!0

f

n

(x)
x

k

= 0 for 0  k  n, because 0  ✓

�
1
x

�
< 1, so that a0 = a1 =

. . . = a

n

= 0, so that (7) holds with x0 = 0. Similarly for f1. On the other hand, the
function t 7�! ✓

�
1
t

�
is discontinuous at every t 2 { 1

n

: n 2 Z \ {0}}.
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Peano used these notions to define lower and upper tangent cones (see next
Section 4) and in the theory of di↵erential equations (see next Section 6).

4. Tangency

The notion of tangent to a circle can be found already in Euclid’s work
and to a curve in Géométrie of Descartes (1637). Until the time of Peano,
several definitions of tangent set to arbitrary figures (9) were formulated, for
example,

(↵) a tangent plane to a surface S at a point p is a plane that contains

the tangent straight line at p of every curve traced on the surface S

and passing through p;
(�) a tangent plane to S at p is a plane that contains the tangents at p to

each curve on S that has a tangent straight line and pass through p.

These and other then accepted definitions, however, led to controversial
results (see Dolecki, Greco [7, (2011)] for historical details). In Applicazioni

Geometriche [34, (1887)] Peano gave a metric definition of tangent straight
line and of tangent plane and, finally, introduced a unifying notion, that of
a�ne tangent cone of a set A at a point x:

(8) tang(A, x) := x+ Li
�!+1�(A� x).

Later, in Formulario mathematico [47, (1908)], Peano introduced another
type of tangent cone, namely

(9) Tang(A, x) := x+ Ls
�!+1

�(A� x).

To distinguish the two notions above, we shall call the first lower a�ne

tangent cone and the second upper a�ne tangent cone.
As usual, after abstract investigation of a notion, Peano considered signif-

icant special cases; he calculated the upper a�ne tangent cones for several
important figures and for curves and surfaces parametrized in a regular way.

5. Optimality conditions

A well-known necessary condition of maximality of a function at a point
is presently formulated in terms of derivative of the function and of tangent
cone of the constraint at that point. Consider a real-valued function f :
X ! R, where X is a Euclidean a�ne space, and a subset A of X.

Regula (of optimality) If f is di↵erentiable at x 2 A and f(x) =
max{f(y) : y 2 A}, then
(10) hDf(x), y � xi  0 for every y 2 Tang(A, x),

where Df (x) : X ! R is the derivative of f at x and Tang(A, x) is the

upper a�ne tangent cone of A at x.

This condition was known to Peano already in [34, (1887)] and in the very
form (10) in [47, (1908)] and was applied by Peano to numerous optimization

9 That is, subsets of Euclidean space.
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problems, in particular, to those of minimizing the sum of distances of a
point from one or several designated points or figures (see Dolecki, Greco [6,
(2007)] for further details).

6. Differential equations

6.1. Linear systems of di↵erential equations. In [36, (1888)] Peano
introduced the exponential of linear operators and the so called Peano series

to represent the solution of a general linear system of di↵erential equations
that he transformed into a vector equation

(11) x

0 = Ax,

with a linear operator A (t) : Rn ! Rn continuously depending on t. Starting
with a constant x0 2 Rn

, he defined

(12) x

n+1(t) :=

Z
t

t0

Ax

n

ds,

showed the existence of M such that |x
n

(t)|  M

n kx0k (t� t0)
n

/n! for each
n, so that the Peano series

x := x0 + x1 + x2 + . . .

and its derivative Ax = Ax0 +Ax1 +Ax2 + . . . converge uniformly. Clearly
x is a solution of (11) such that x (t0) = x0. On using (12), Peano defined
the resolvent operator of (11) (10)

R

t

t0
:= (I +

Z
t

t0

Ads+

Z
t

t0

Ads

Z
t

t0

Ads+ . . .) ,

and thus the solution to (11) with the initial condition x (t0) = x0, given by
x (t) = R (t0, t) x0. In the case of a constant A, he represented the resolvent
by

e

A := I +A+ 1
2A

2 + . . .+ 1
n!A

n + . . . ,

so that, in this case,

x (t) = e

A(t�t0)
x0.

Finally, he gave a solution of a non-homogeneous equation

x

0 = Ax+ b

in the form

x (t) = R

t

t0
x0 +R

t

t0

Z
t

t0

R

t0
s

b (s) ds.

In this short paper, Peano preceded this illuminating theory by a theory
of linear operators, their matrix representations, their norms and convergent
series of operators, in particular, the exponential of operators.

10 It is called Peano-Baker series in Baake, Schlägel [1, (2012)]. Here I : Rn ! Rn is
the identity operator.
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Peano’s view was unprecedented in that epoch. As Garret Birkho↵ ob-
served in [2, (1973)], these foreshadowed the modern theory of Banach spaces
and algebras.

6.2. Nonlinear di↵erential equations and di↵erential inequalities.
In [33, (1886)] Peano proved the existence of solutions in the small of an
initial value problem

(13) x

0 = f(t, x), x (t0) = x0,

for a continuous function f : R⇥ R ! R and, consequently, the uniqueness
for f having, in addition, a bounded partial derivative with respect to x. To
prove uniqueness of solutions, Peano used an argument that amounts to the
following Grönwall type di↵erential inequality (11): if c is a real number and
u

0(t)  c u(t) for each t � t0, then

(14) u (t)  u(t0) e
c (t�t0)

for t � t0. Moreover, Peano used (14) in [44, (1897)] to prove continu-
ous dependence of solutions with respect to their initial values, whenever a
Lipschitz condition holds.

The proof of the existence of solutions to (13) in [33, (1886)] is based on
iterated use of the following comparison properties (see Greco, Mazzucchi
[13, 15] for details): If '1,'2 : [t1, t2] ! R satisfy one of the two following
conditions:

(i) '0
1(t) > f(t,'1(t)) and '

0
2(t)  f(t,'2(t)) for each t 2 [t1, t2] ,

(ii) '0
1(t) � f(t,'1(t)) and '

0
2(t) < f(t,'2(t)) for each t 2 [t1, t2] ,

then '1(t2) > '2(t2) provided that '1(t1) � '2(t1). (
12)

Klein asked Peano to generalize his theorem from the scalar case to sys-
tems of di↵erential equations in view of a publication in Mathematische
Annalen (see Segre [57, (1997)]). Peano replied that passing from a scalar
equation to a system of equations would considerably complicate the quest,
but a few years later he presented a paper [39, (1890)], in which he solved
the problem, which can be stated in the same terms, the only di↵erence
being that f : R⇥Rn ! Rn for a natural n � 1. Peano [39, (1890)] showed
that the Lipschitz condition was not necessary for uniqueness, and also gave

11 In [16, (1919)] Grönwall introduced his inequalities to establish di↵erentiability with
respect to a parameter of the solutions of a system of di↵erential equations.

12 In the inequalities (i) and (ii) we maintain the convention adopted by Peano [39,
(1890)], that is, we assume the existence of both the left and the right derivatives fulfilling
the same inequalities.
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several examples of non-uniqueness, for instance,

Figure 3. Here we show four out of infinitely many solu-
tions: '0,'1,'4 and '1 ⌘ 0.

for every r, s 2 [0,1), the null function and the functions '
r

(t) := '(t� r),
 

s

(t) := �'(s� t) and h

s,r

(t) :=  

s

(t) + '

r

(t) where

' (t) :=

⇢
0, if t  0,
t

3
, if t > 0,

are the solutions of

(15) x

0 = 3x
2
3
, x (0) = 0.

A year later, Picard published a paper [50, (1891)] proving the existence
of a solution (but not uniqueness) of a vector equation of type (13) under a
Lipschitz condition. Of course, Picard’s assumption was gratuitous in view
of the result of Peano, who published in [42, (1892)] a comment in this vein.

Although Peano’s existence theorem for systems of di↵erential equations
became famous, both the proofs given by Peano in [39, (1890)] and in Formu-

lario mathematico [47, (1908)] have always been ignored (see Greco, Mazzuc-
chi [14] for details); the few who talked about them formulated judgements
in evident contrast with what Peano a�rmed. We shall give here an out-
line of Peano’s principal definitions and propositions so that a reader might
appreciate the originality of his ideas.

Let f : [t0 � s, t0 + s] ⇥ B

r

(x0) ! Rn be a continuous function, s > 0
and B

r

(x0) ⇢ Rn a closed ball centered at x0 with radius r > 0. Let M

be the maximum of f on [t0 � s, t0 + s] ⇥ B

r

(x0) and let a 2 B

r

(x0) and
t1, t2 2 [t0 � s, t0 + s] so that t1 6= t2. We denote by Sol(a, t1, t2) the set of
solutions of

(16) x

0 = f(t, x), x (t1) = a,

on [t1, t2] and by

(17) F(a, t1, t2) := {�[t2] : � 2 Sol(a, t1, t2)}
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their sections. We denote by Sol
"

(a, t1, t2) the set of "-approximated solu-
tions (13) of (16) on [t1, t2], and by

(18) F
"

(a, t1, t2) := {�[t2] : � 2 Sol
"

(a, t1, t2)},
their sections and by

(19) A(a, t1, t2) :=
\

">0

F
"

(a, t1, t2)

their intersections. Let t 2 [t0 � s, t0 + s] with t 6= t0. The principal steps of
Peano’s proof are:

(i) F
"

(a, t1, t2) ⇢ F
"+h

(a, t1, t2) for each h > 0;
(ii) A(a, t1, t2) is a compact set;
(ii) A(a, t1, t2) = F(a, t1, t2);
(iv) F

"

(x0, t0, t) 6= ; for each " > 0, if |t0 � t|M  r;
(v) A(x0, t0, t) 6= ; if |t0 � t|M  r.

In doing so, Peano realized that the existence of a selection of a multival-
ued map t 7! A(x0, t0, t) was not granted by the axioms of the set theory, but
in the specific problem, with which he was confronted, he could get around
the obstacle by picking the least element of the compact set A(x0, t0, t) with
respect to a lexicographic order of Rn. He observed that a principle of

infinite arbitrary choices was not granted by the axioms of set theory.
Having in mind the indicated phases (i)-(v) of proof, it is surprising that

Kennedy [23, (1969)] a�rms that

In 1890 he [Peano] extended his theorem to systems of first or-
der di↵erential equations, using an entirely di↵erent method
of proof (successive approximations).

Equally bizarre is an opinion of Mahwin [24, (1988)], [25, (2001)]:

The existence of at least one solution to Cauchy’s problem
for a system with a continuous right-hand side is proved in
1890 by Peano, by combining Euler-Cauchy’s approximation
method with a compactness theorem of Ascoli and Arzelà.

Let us also cite Flett [9, (1980), p. 158]:

Peano’s proof is both long and arduous, since what is es-
sentially a proof of the Ascoli-Arzelà theorem is intricately
embedded in it.

7. Integral representation of remainders and Schwartz’s
distributions

Clark McGranery informed us recently of repeated citations (without bib-
liographic references) of Peano in Laurent Schwartz’s autobiography [56,

13 Peano defines "-approximated solutions in [47, (1908)], as we have seen in (6), while
in [39, (1890)] a function � : [t1, t2] ! B

r

(x0) is said to be an "-approximate solution of
(16), if �(t1) = a and k�0(t)� f(t, �(t))k < " for each t 2 [t1, t2].
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(2001), pp. 212, 229, 230]. In chapter VI “ The Invention of Distributions”
Schwartz wrote: (14)

The mathematician Peano wrote in 1912 [sic] on the di�cul-
ties of di↵erentiation: “I am sure that something must be
found. There must exist a notion of generalized functions
which are to functions what the real numbers are to the ra-
tionals.” This was a marvelous intuition, and it arose long
before 1944. But the mathematical knowledge of the time
did not make it possible for Peano to find the generalized
functions, or even to conceive of them; at that time it would
have been a superhuman task.

In fact, in Resto nelle formule di quadratura, espresso con un integrale

finito [48, (1913), p. 569] Peano defined a Heaviside function ' of one real
variable by '(x) = 0 for x < 0, '(x) = 1 for x > 0 and '(0) = 1

2 , and
commented:

The function ' has null derivative everywhere except for 0,
where ' is discontinuous with a jump +1, so that, by the
usual definition, the derivative is infinite, what halted the
analysts, but the electricians continued to advance; Maxwell,
Heaviside, and, more recently, Giorgi [. . . ] introduced an
impulsive function, that I will indicate with Ux, which is null
for all x 6= 0 and is infinite for x = 0, however in such away
that

R +1
�1 U(x)dx = 1. Consequently,

Z
x

�1
U(z)dz = '(x) for each x 2 R.

As in algebra, after having studied integers, [...] one intro-
duces the rational numbers which are not numbers considered
before, but they belong to a wider category than the integers,
so the impulsive function is not a function, as those which
are defined in analysis, but it belongs to a wider category of
entities (15).

Nowadays, the impulsive function U is known as the Dirac delta func-

tion (16).

14 An other citation of Peano in the same chapter of [56, (2001), p. 229]: “It was
necessary to do what Peano had said to do in 1912, but had not done himself (and which
I had never heard of). To generalize these functions, it was necessary to overcome a
powerful inhibition. But like Peano, I knew by heart the generalization of the rationals to
the reals!”.

15 In [49, (1914)] Peano derived the equalities
R +1
�1 U(x)dx = 1 and

R
x

�1 U(z)dz =

'(x), by defining, for every real number x, the function z 7! U(z � x) as equal to 1
dx

on
an infinitesimal interval (x, x+ dx) and null otherwise.

16 This function was reintroduced by Dirac in 1926 for use in quantum mechanics; see
Schwartz [56, (2001), p. 214] and Dirac [5, (1958), pp. 58-61].
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In [48, (1913)], as well as in [49, (1914)], Peano gave a rule for integral
representation of remainders (a) of quadrature formulas and (b) of approxi-
mation by a polynomial of degree less than n. More precisely, Peano showed
that if R(f) denotes the remainder related to a real function f of one real
variable, then, under appropriate hypotheses,

(20) R(f) =

Z +1

�1
g(x)Dn

f(x)dx,

where the “kernel” g (which is independent of f) fulfills g(x) = R(p
x

) with
the function p

x

: R ! R defined by

(21) p

x

(z) :=
(z � x)n�1

(n� 1)!

1

2
sgn(z � x).

Appropriate hypotheses are: (i) linearity of R, (ii) the natural number n
must be such that the remainder R of polynomial functions of degree less
than n is null, (iii) the remainder’s formula (20) concerns functions n-times
di↵erentiable. Nowadays, the theorems assuring the representation (20) of a
linear remainder in terms of (21) are called “Peano kernel Theorems”; they
form a powerful tool in numerical anlysis (17).

To provide “ the kernel g as remainder of the function (21) ”, whenever
(20) holds, Peano adopted a heuristic approach based on functions of Heav-
iside and Dirac. First of all, he observed that the function '

x

: R ! R,
defined by

(22) '

x

(z) :=
(z � x)n�1

(n� 1)!
'(z � x),

and the function p

x

given by (21) have the same remainder (18), since, being
' � 1

2sgn = 1
2 , their di↵erence '

x

� p

x

is a polynomial of degree less than
n. Secondly, he observed that the n-th derivative of '

x

is the Dirac delta
function U at x, i.e., z 7! U(z � x). Therefore, by (20),

(23) R('
x

) =

Z +1

�1
g(z)Dn

'

x

(z)dz =

Z +1

�1
g(z)U(z � x)dz = g(x).

Talking about the Heaviside function ' (called discontinuity factor in [49,
(1914)]), Peano wrote (in Latin without flexions) the following comment,
which makes us think of the distributions, viewed as generalized functions
or as functions beyond themselves.

Cultores de analysi infinitesimale considera solo functiones
determinato et finito, ut 'z, que pote es espresso per sym-
bolos de analysis, et non considera functione impellente, que
es comodo, sed non necessario.

17 See, for example, Sard [54, (1948)], [55, (1963)], Davis [4, (1963)], Stroud [58, (1974)]
and Powell [51, (1981)].

18 That is, R('
x

) = R(p
x

) .
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On evoking in [56, (2001), p. 230] the moment of discovery of distributions,
Schwartz recollects Peano:

The spark shot forth one night in early November 1944 -
I no longer remember exactly which. To find generalized
solutions of partial di↵erential equations, it was necessary to
generalize the notion of function! And I immediately found
how to generalize it; the very notion which Peano had vainly
searched far in 1912 [sic].

8. Axiomatizing Geometry

In his modern axiomatic approach to geometry in Vorlesungen über neuere

Geometrie [29, (1882)] Pasch banned any reference to geometric signifi-
cation of objects during deductive processes in order to avoid errors due
to a contamination of purely logical and mathematical inference by non-
mathematical intuition.

In Principii di geometria logicamente esposti [37, (1889)] Peano carried
out this purist conception of deductive method to its extreme consequences
by evicting the use of common language. In order to develop fundamentals of
a�ne geometry he exclusively employed his logical set-theoretic ideography.
He rigorously followed the rule of using only completely determined terms
and making unequivocal what is meant by definition and proof. Peano used
two primitive terms (point and segment) and 17 axioms, the first 11 of which
nearly coincided with Pasch’s axioms (19).

It is remarkable that he defined convex sets and studied operations that
preserve convexity, privileging the use of convexity in geometrical construc-
tion. In particular, Peano’s axiom XVII is an axiom of continuity which
states that every segment joining an internal and an external point of a
convex set is divided by a point into an internal and an external segment
(see fig. 5). The axiom of continuity was used by Peano [37, (1889), p. 38-39]
to assert Euclidean parallel axiom in terms of half-lines (see footnote 22).
There is no axiom of continuity neither in Pasch [29, (1882)] nor in the first

19 In Whitehead [63, (1907), p. 3-7] and in Torretti [61, (1978), p. 220-221] the reader
can find all Peano’s axioms translated in English.
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edition of Hilbert’s Grundlagen der Geometrie [17, (1899)]. (20)

Fig. 4: Peano’s axiom XVI Fig. 5: Peano’s axiom XVII

In Sui fondamenti della geometria [43, (1894)] Peano axiomatized metric
geometry by adding a primitive term of motion and other 8 axioms, and,
which is most remarkable, in Analisi della teoria dei vettori [45, (1898)] he
axiomatized geometry with the aid of the theory of vectors, adopting as
three primitive terms point, vector and internal product.

He wrote in [43, (1894)] that a first scientific question that arises in a
deductive theory is that of independence of axioms, hence their minimality,
and moreover described in [45, (1898)] a method of verification of indepen-
dence by assigning di↵erent interpretations, under which some of the axioms
are fulfilled and the other are not. In [43, (1894)] he wrote:

To prove the independence of n postulates, it would be nec-
essary to give n examples of interpretation of the undefined
signs, each of which satisfies n � 1 postulates, and not the
remaining one.

He also pursued the objective of minimality of primitive terms. Following
Peano, a member of his school, Padoa [27, (1900)] put forward a method for
proving the independence of primitive terms.

In Grundlagen der Geometrie [17, (1899)] of Hilbert, the axiomatic ap-
proach to geometry is very di↵erent from that of Peano. Let us give an
example of this di↵erence in the axiom of continuity which for Hilbert is
composed of both the axiom of Archimedes and an axiom of completeness;
the latter reads [19, (1902), p. 15]:

To a system of points, straight lines, and planes, it is impos-
sible to add other elements in such a manner that the system
thus generalized shall form a new geometry obeying all of the
five groups of axioms. In other words, the elements of geom-
etry form a system which is not susceptible of extension, if
we regard the five groups of axioms as valid.

20 Hilbert’s axiom of continuity includes an axiom of completeness, appeared for the
first time in the French translation [18, (1900), p. 123]. Hilbert wrote [19, (1902), p. 15-
16]: “[The axiom of completeness] although not of a purely geometrical nature, merits
particular attention from a theoretical point of view. [. . . ] However, in what is to follow,
no use will be made of the axiom of completeness.”
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As Axiom XVII of continuity, Peano’s Axioms XIII, XIV and XVI (see
fig. 6, 7, 4) were completely original and fecund.

Fig. 6: Peano’s axiom XIII Fig. 7: Peano’s axiom XIV

Let xy denote the segment (endpoints excluded) joining two points x and y.

Peano [37, 43] defines and denotes by x

0
y the shadow of a point y illuminated

from a point x, as the set of the points c such that y 2 xc (21). More
generally, if X and Y are set of points, he defines the segment-join

XY :=
[

{xy : x 2 X, y 2 Y }

and the shadow

X

0
Y :=

[
{x0y : x 2 X, y 2 Y }. (22)

Fig. 8: the segment join XY Fig. 9: the shadow X

0
Y

Axiom XIII: Let a, b, c be non-collinear points. For every point d 2 ab

and every point e 2 cd there exists a point x 2 cb such that e 2 ax.

Axiom XIV: Let a, b, c be non-collinear points. Then for every point

d 2 ab and every point e 2 cb there exists a point x 2 cd \ ae.

Axiom XVI: Let p be a plane and let a and b be points such that b 2 a

0
p.

Then for every point x either x 2 p or xa \ p 6= ; or xb \ p 6= ;.

21 Peano also refers to x

0
y as the “prolongation of the segment xy beyond y”. This

binary operation, denoted by the apostrophe 0, is introduced by Peano for expliciting the
variables y and z in the relation x 2 yz; in fact x 2 yz () z 2 y

0
x () y 2 z

0
x.

22 These two operations of “segment-join” and “shadow” were used by Peano to “con-
struct” classical sets of points: straight-lines, half straight-lines (rays), parallel rays,
planes, half-planes, half-spaces, angles, triangle, tetrahedron, and so on. For example,
let a, b, c, d be points, then a(bc) is a triangle; (ab)(cd) is a tetrahedron; a

0(bc) is the
subset of a plane delimited by the segment bc and by the rays a

0
b and a

0
c; (ab)0(ab) is a

straight-line through a and b, whenever a 6= b; analogously, (abc)0(abc) is a plane through
a, b and c, whenever a, b and c are non-collinear. Two rays a

0
b and c

0
d are said to be

parallel, if d(a0
b) = b(c0d) (see [37, (1889), p. 38].
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The geometric axioms of Peano (and above all, Axioms XIII and XIV) and
the operations of “segment-join” and “shadow” regain importance nowadays
in the setting of convex geometries (see Van de Vel [62, (1993)]), of linear
geometries (see Coppel [3, (1998)]) and of join geometries and geometric

interval spaces (see Prenowitz and Jantosciak [52, (1979)]), order geometry

(see Pambuccian [28, (2011)], Retter [53, (2013)]).
Axioms XIII, XIV and XVI are related to the following famous Pasch

axiom [29, (1882), p. 21]: If a line in the plane of a triangle does not pass

through any of its vertices but meets one of its sides, then it also meets an-

other of its sides. Axioms XIII, XIV and XVI are absent both in Pasch’s
Vorlesungen [29, (1882)] (23) and in Hilbert’s Grunglagen; although these
axioms as well as the operations of segment-join and shadow, are investigated
in recent literature, it is extremely rare they are attributed to Peano. For
example, inner and outer Pasch axioms, discussed in [59, (1999), p. 179-180]
by Tarski, coincide with Peano’s Axiom XIV and XIII, respectively; Peano’s
Axiom XV coincides with the “space order axiom” which, as reported in
Bernays’s Supplement of [20, (1971), p. 200] to Hilbert’s Grundlagen, Van
der Waerden proposed as a substitute for the Pasch axiom. An other exam-
ple is that the operations of join and extension in Van de Vel [62, (1993),
p. 77] and in Prenowitz and Jantosciak [52, (1979), p. 49, 160], as well as
the operations of product and quotient in Coppel [3, (1998), p. 93, 97] are
precisely Peano’s operations of segment-join and shadow, respectively.
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