CONVERGENCE-THEORETIC CHARACTERIZATIONS OF COMPACTNESS: ERRATA CORRIGE

SZYMON DOLECKI

I am grateful to Frédéric Mynard (Georgia Southern University), and to Iwo Labuda and Brian L. Davis (University of Mississippi) who advised me that my paper [2] contains some errors.

- (1) F. Mynard observed [5] that
 - (a) In Theorem 8.2 an assumption $\operatorname{inh}_{\tau}^{\natural} \mathfrak{P} \subset \mathfrak{P}$ should be added. This will enable the use of $\frac{\mathfrak{P}}{\mathfrak{R}}(\frac{\xi}{\iota})$ -cover-compactness in the proof.¹
 - (b) On applying Proposition 7.1 to Theorem 10.3 and the subsequent corollaries, all the properties should be of cover-compactoid type.
- (2) Later B. L. Davis and I. Labuda also noticed 1a and [4]
 - (a) In (8.3) $\mathcal{G} \# \mathcal{A}$ should be $\mathcal{G} \cap \# \mathcal{A}$.
 - (b) An assumption lacks in Proposition 8.1.

In Theorem 10.3, \mathfrak{D}_* -cover-compact should be replaced by $\frac{\mathfrak{D}_*}{\mathfrak{J}_*}(\frac{\xi}{\xi})$ -cover-compact. As Davis and Labuda pointed out, errors of the type reported in (2a) occurred already in some of my previous papers, namely in [1, Theorem 2.1], where the class \mathfrak{P} should be assumed to consist of finitely additive families of sets. They traced back the original error to the proof (not the theorem itself) of [3, Theorem 3.8]. The original confusion consisted in admitting that $\mathrm{adh}\,\mathcal{H}$ is equal to $\mathrm{adh}\,\mathcal{H}^{\cap}$. Here \mathcal{H} is a family of subsets of a convergence space, \mathcal{H}^{\cap} is the family of finite intersections of the elements of \mathcal{H} , and $\mathrm{adh}\,\mathcal{B}$ is the union of the limits of filters that mesh with \mathcal{B}^2 . The error had not been noticed before, because the special classes of families studied had the required property.

In order to correct (2b) the family $\mathcal{P}_{\mathfrak{R}}$ in the definition (8.4) should consist of all subsets of the unions of families $\mathcal{R} \in \mathfrak{R}$ which refine the family \mathcal{P} , and the class \mathfrak{R} should contain all finite families of sets. Under these assumptions, the claim in the proof that \mathcal{P} is a refinement of $\mathcal{P}_{\mathfrak{R}}$ is justified, and on the other hand, $\mathcal{P}_{\mathfrak{R}}$ is an ideal, the fact used in the proof.³

References

- S. Dolecki. Active boundaries of upper semicontinuous and compactoid relations; closed and inductively perfect maps. *Rostock. Math. Coll.*, 54:51–68, 2000.
- [2] S. Dolecki. Convergence-theoretic characterizations of compactness. *Topology Appl.*, 125:393–417, 2002.
- [3] S. Dolecki, G. H. Greco, and A. Lechicki. Compactoid and compact filters. *Pacific J. Math.*, 117:69–98, 1985.

Date: January 4, 2006.

¹In the second line of the proof of Theorem 8.2, thus by (8.7), there exists should be thus there exists.

²that is, $F \cap B \neq \emptyset$ for each $F \in \mathcal{F}$ and $B \in \mathcal{B}$.

³In the second line of the proof of Proposition 8.1 $\mathcal{P}_{\mathfrak{R}} \in \mathfrak{P}_{\mathfrak{R}}$ should be $\mathcal{P}_{\mathfrak{R}} \in \mathfrak{P}$.

SZYMON DOLECKI

[4] I. Labuda. Compact families of sets. to appear, 2006.[5] F. Mynard. Relations that preserve compact filters. to appear, 2006.

Mathematical Institute of Burgundy, Burgundy University, B.P. 47 870, 21078 Dijon, France

 $E\text{-}mail\ address:\ \texttt{doleckiQu-bourgogne.fr}$

 $\mathbf{2}$