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ABSTRACT. It is proved that many known convergences (e.g., continuous con-
vergence, Isbell topology, compact-open topology, pointwise convergence) on
the space of continuous maps (valued in a topological space) can be repre-
sented as the dual convergences with respect to collections of families of sets,
and that they can be characterized in terms of the corresponding hyperspace
convergences of the inverse images of closed sets. As a result, the convergence
of real-valued functions for a dual convergence implies the convergence of their
sets of minima on the corresponding hyperspace.

1. INTRODUCTION

It is a well-known and simple fact (see e.g., [5]) that the continuous convergence of
real-valued functions entails the upper Kuratowski convergence of the corresponding
sets of minimizers:

fo e lim[X,R] F = Min fy € lim[X7$] Min F.

If X and Z are topological spaces, then the continuous convergence [X, Z] is
the coarsest convergence on the set C(X, Z) of continuous functions for which the
coupling map (z, f) = f(x) is (jointly) continuous. As the usual topology of the
real line is the supremum of the upper and the lower topologies inherited from the
extended line R, the continuous convergence is the supremum of the upper and the
lower continuous convergences. On the other hand, the upper Kuratowski conver-
gence is the continuous convergence on C(X,$), where $ stands for the Sierpinski
topology {@,{1},{0,1}} on {0,1}. The space C(X,$) can be identified with the
hyperspace of closed subsets of X. Therefore the discussed stability result follows
from the following two observations: the continuous convergence with respect to
the lower topology is equivalent to the upper Kuratowski convergence of the cor-
responding lower level sets; the continuous convergence with respect to the upper
topology implies the upper convergence of the corresponding infima.

Similarly, numerous topologies (and convergences) defined on the set C(X,R)
with the aid of families of subsets of X, like compact-open topology or pointwise
convergence, entail the convergence of the sets of minima with respect to the corre-
sponding topologies on the hyperspace of closed subsets of X. We observe that this
is still true for the Isbell topology, that is, the topology defined on C'(X,R) with the
aid of the collection of compact families of subsets of X [14][15]. It follows from
[9] that the Isbell topology of C(X,$) is homeomorphic to the upper Kuratowski
topology, that is, to the topological reflection of the upper Kuratowski convergence.
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In this paper I show that all the mentioned convergences and topologies on
C(X,R) can be represented as dual with respect to some collections of families
of subsets of X. In particular, continuous convergence is dual with respect to a
subcollection of compact families. Similarly the Isbell topology is dual with respect
to all compact families, the compact-open topology is dual with respect to compact
sets, and the pointwise convergence is dual with respect to finite sets. Moreover
dual convergences can be represented in terms of the corresponding hyperspace
convergences of the inverse images of closed sets [10]. In our special setting of lower
and upper topologies on C(X, R), this specializes to the corresponding convergences
of lower and upper levels. As a consequence, many results (known and new) on
stability of minima appear as corollaries of a single general fact. For example,

(1) The continuous convergence of functions implies the upper Kuratowski con-
vergence of their minima;

(2) The convergence of functions in the Isbell topology implies the convergence
of their minima in the topologization of the upper Kuratowski convergence;

(3) The convergence of functions in the compact-open topology implies the con-
vergence of their minima in the upper Wijsman topology;

(4) The pointwise convergence of functions implies the convergence of their
minima in the upper set-theoretic convergence;

(5) The convergence of functions in the closed-open topology implies the con-
vergence of their minima in the upper Vietoris topology.

2. CONTINUOUS CONVERGENCE

Although our framework is that of topological spaces, we are confronted with
non-topological convergences as soon as we investigate spaces of (continuous) maps.
Indeed, as mentioned in the Introduction, even if X, Z are topological spaces, the
least structure on C(X,Z), for which the canonical coupling is continuous, is, in
general, non-topological. Actually the emergence of non-topological convergence
theory [1] was motivated by this fact.

A convergence on Y is a relation between the filters F on Y and the elements y
of Y, denoted by y € lim F (= limy F) provided that F C G = lim F C lim G and
y € lim WV, (y) for every y € Y, where N, (y) is the principal ultrafilter determined
by y (see [7]). A set O in a convergence space Y is open if O Nlimy F # & implies
O € F. The family of open subsets of a convergence space fulfills all the axioms
open sets of a topology. This topology is called the topologization of the convergence
(the topological reflection in terms of category theory).

If X, Z are convergence spaces, then C(X, Z) stands for the subset of ZX con-
sisting of all the maps continuous from X to Z. The continuous convergence [X, Z]
(of X with respect to Z) is the coarsest among the convergences on C(X, Z) for
which the evaluation is continuous from X x C(X,Z) to Z. The convergence
[X, Z] exists for arbitrary spaces X and Z. Let us describe explicitly the contin-
uous convergence in the case of topological spaces X and Z. If G is a filter on
X, and F is a filter on C(X, Z2), then (G, F) stands for the filter generated by
{UfeF f(G):Ge G, FeF} Then

fe lim[y,z] F

if and only if f(z) € limgz(N(z),F) for every z € X (where N(z) is the neigh-
borhood filter of z); in other terms, if for each x € X and every open subset O
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of Z such that f(x) € O there is a neighborhood W of z and F € F such that
User f(W) CO.

The convergence [X, Z] is Hausdorff (that is, two filters that converge to distinct
elements do not mesh) provided that Z is Hausdorff. If however Z is the Sierpinski
topological space $, then [X,$] is the upper Kuratowski convergence on the space
of X-closed sets, and if D is a closed set such that D D A, and A € lim[x g F, then
also D € lim[y,g) F. Moreover [X, $] is hypercompact, which means that every filter
converges (in this case, to the whole of X).

3. DUAL TOPOLOGIES

Let X, Z be topological spaces. A family A of open subsets of X is openly isotone
if O D A € A implies that O € A. If A is openly isotone and O is an open subset
of Z, then let

(3.1) [A4,0]:={f € C(X,Z): f1(O) € A}.

We denote by Ox the family of open subsets of X, and by Ox(4) := {0 € Ox :
ACO}. If A= 0Ox(A) then (3.1) is abridged to

[A,0]:={feC(X,Z): Ac f~1(O)}.
It is straightforward that
(3:2) [UieI A, 0] = Uiez['Ai’ ol
(33) [.A() A A, O] = [.Ao, O] N [Al, O],

where Ag A Ap := {AO UA;: Ay € Ap, Ay € Al} In general, [.A, Oo] N [.A, 01] is
not equal to [A, Og N O4].

If « is a collection of openly isotone families A of subsets of X, and Oy is the
family of open subsets of Z, then

(3.4) {[A4,0]: A€ a,0 €Oz}

is a subbase for a topology on C(X,Z). This topology will be denoted (X, Z)
and the space of continuous maps endowed with it by C, (X, Z). If, in particular,
a ={Ox(D) : D € D}, where D is a family of subsets of X, then (3.4) is a base
for a topology on the function space, sometimes denoted by Cp(X, Z).

Many classical topologies on spaces of continuous maps are defined with the aid
of bases of the form [D, O], where D € D and O is open.

Example 3.1. If we consider the family X <X of finite subsets of X, then
{[F,O0]: Fe X% 0¢c 0Oy}

is a base of a topological space denoted by Cp(X,Z); the corresponding topology is
that of pointwise convergence.

Example 3.2. If K = Kx stands for the family all compact subsets X, then
{I[K,0]: K € Kx,0 € Oz}

is a base a topological space Ci(X,Z), called the compact-open topology.
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Example 3.3. If Z = Zx stands for the family all closed subsets X, then
{1Z,0]: Z € Zx,0 € Oz}

is a base a topological space C,(X,Z), called the closed-open topology. It is a very
strong topology (see Example 4.3).

A family A of open subsets of a topological space X is called compact [8] if when-
ever a family P of open sets fulfills UP € A, then there exists a finite subfamily

Py such that U Py € A. The family O(x), of open neighborhoods of z, is compact;

if K is a compact set, then the family O(K) is compact. Denote by k = k(X)) the
collection all (openly isotone) compact families on X. We notice that

(Vier Ai € 5(X)) =, _, Ai € 5(X),

hence for every family C of compact subsets of X, the the family |J, . Ox (K) is
compauct.1

Example 3.4. The topology for which
{[A,0]: A€ k(X),0 € Oz}
is a subbase, is called the Isbell topology (see, e.g., [10]).

If @ and vy are two collections of families on X, and let Z be a topological space.
Obviously, if v C « then v(X,Z) < «(X,Z), because there are more open sets
for o than for 7. In particular, the Isbell topology is finer than the compact-open
topology, which is finer than the pointwise convergence. In fact,

(X, 2) < k(X,Z) < K(X,Z) <X, Z],

and all the inequalities can be strict (see [10]).

As for the closed-open topology, it is finer than the compact-open topology,
provided that X is Hausdorff (because in this case, each compact subset of X is
closed). In Section 5, regularity of X is shown to be sufficient for z(X, Z) to be
finer than [X, Z].

The collection o(X) := {Ox(z) : © € X} (consisting of all the families of open
neighborhoods of elements of X) is a subclass of x(X).? Therefore the topology
generated by {[A4,0] : A € 0o(X),0 € Oz} is coarser than the Isbell topology. This
topology is closely related to the continuous convergence. Namely,

Theorem 3.1. fy € lim(x z F if and only if fo € [Ox(x),O] implies that there is
W € Ox(z) such that [W,0] € F for every x € X and each O € Og.

Proof. By definition, fy € lim|x, 7 F if (z, fo) € lim,(Ox (x),F) for every z € X,
that is, whenever for every O € Oz(fo(x)) there is W € Ox(z) and F' € F such
that f € [W, O] for each f € F. In other words, if for every open set O such that
fo € [x,0] and there is W € Ox () such that [G,0] € F. Now, fo € [z,0] if and
only if fo € [Ox(x), 0], because fy is continuous. O

More is true: it was proved in [10] (in full generality) that

Theorem 3.2. fy € limx 5 F if and only if fo € [A,O] implies that there is
A € A such that [A, 0] € F for every A € k(z) and each O € Oy.

LA topological space is called consonant if every compact family is of that form [9].
27 general case of arbitrary convergences is considered in [10].
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4. HYPERSPACES AND FUNCTION SPACES

We have said that if $ is the Sierpifiski topology (on a two-element set), then
C(X,$) can be identified with the hyperspace of all the closed subsets of X. The
dual topologies with respect to collections «, also admit specializations to that case,
as does the continuous convergence. The following proposition is a special case a
general fact in convergence spaces (see, e.g., [7]):

Proposition 4.1. The continuous convergence [ X, $] is homeomorphic to the upper
Kuratowski convergence.

Proof. Let ¢4, € C(X,8) and F be a filter on C(X,$). By definition ¢, €
lim(x g F if and only if ¢4 (x) = 1 implies that there exists W € Ox (z) such that
[W,{1}] € F. Now, the hypothesis is equivalent to = ¢ Ay and the thesis means
that there is F' € F and W € Ox/(x) such that ¢ 4,(W) = {1} for every A € F,

that is, W N U A = @, in other words, = ¢ cl (U ) On rewriting,
Y a, €limx g F 1f and only if

ﬂd(U A)CAO.

FeF A€EF

Open sets for a topology a(X,$), are generated by a subbase
(4.1) A {1}]=A.={BeOx: X\ Be A}

where A € . Actually, it is a base if « contains finite intersections of its elements,
and it is a collection of all open sets (of a(X,$)) if « is stable by unions. Therefore

Proposition 4.2. Ag € lim,(x,) F if and only if Ag € A. then A. € F for every
AealX).

It was proved in [9] that D is an open set for [X,$] if and only if D, is an
openly isotone compact family on X. Therefore, it follows from (4.1) that the
Isbell hyperspace topology (X, $) is equal to the topologization T[X, $] of [X,$],
that is, to the upper Kuratowski topology. Nevertheless in general T[X7 Z] is not
equal to (X, Z) [13].

If  ={Ox(D): D € D} then

Corollary 4.3. Ag € limp(x g) F if and only if for every D € D such that AgND =
& there is F € F such that AN D = & for each A € F.

Example 4.1 (pointwise topology). If D is the family of all finite subsets of X,
then we get on C(X,$) the upper set-theoretic convergence, that is, B € lim§
whenever (Nzeg Uper 7 C B. We denote this space by Cp(X, $).

Example 4.2 (cocompact topology). (also called upper Wijsman topology) If K
is the family of compact subsets of X, then A € Nic(B) if for every K € K disjoint
from B, one has {A € C(X,8): ANK =@} C A. We denote it Cr(X,$).

Example 4.3 (upper Vietoris topology). If Z = C(X,$) is the family of closed
subsets of X, then A € N (B) if for every O € Ox such that B C O, one has
{A e C(X,$) : AcC O} C A This is a very strong topology, as indicates the
Chogquet theorem [1][6].
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If F is a filter on C(X, Z) then for every closed subset C of Z the filter F~1(C)
is generated by {UfeF{f_l(C')} :FeF}onC(X,$). It is proved in [10] that

Theorem 4.4. fy € limx 7 F if and only if ot (0) € lim;x ) F~(C) for each
closed subset C of Z.

Theorem 4.5. fy € lim,(x,z) F if and only if fot(o) e lim,(x,5) F~H(C) for each
subset C' of Z.

5. CLOSED-OPEN TOPOLOGY

Although the upper Vietoris topology C.(X,$) has been known for a long time
(see, e.g., [2]), the corresponding convergence of functions (the closed-open topol-
ogy) C.(X,R) seems to appear here for the first time.

It is well-known and straightforward that if X is a regular topological space then
the upper Vietoris topology is stronger than the upper Kuratowski convergence.
Choquet observed in [1] that the upper Vietoris topology is very strong, and for
that reason he deemed it uninteresting. He noticed that if a countably based filter
F in a metrizable space X converges to A in the upper Vietoris topology ®, then
there is a compact subset K of A such that the filter generated by {F \ A: F € F}
converges to K in the upper Vietoris topology (see also [3],[11],[16]). Nowadays
some weaker conditions on the space and the filter have similar consequences [6].

The considerations above indicate that, more generally, closed-open topology is
very strong. I observe

Proposition 5.1. If the underlying topology is reqular, then the closed-open topol-
ogy 1s stronger than the continuous convergence.

Proof. Let fo € lim,(x z) F and let z € X. Then for every open neighborhood O of
f(xo) and an open neighborhood V of z such that fo(V) C O there exists a closed
neighborhood W of x such that fo(W) C O. It follows that [W,0] € F. O

Denote by N, (y) the principal ultrafilter of y. If F is a filter on C(X,Z) then
F(z) is the filter generated by {{f(z): f € F'}: F € F}. Finally if a filter F on
C(X, Z) converges to fy in z(X,R), then define the active set of F by

act(F) :={z € X : F(z) # N.(fo(x))}-

Recall that a (Hausdorfl) topological X space is hemicompact if there exists a
sequence (K, ), of compact subsets of X such that each compact subset of X is
included in one of the elements of this sequence; it is a k-space if a set is closed
provided that its intersection with each compact set K is closed in K. There
exist hemicompact spaces, which are not k-spaces; on the other hand, each locally
compact space of countable weight is a hemicompact k-space [12, p. 165].

Theorem 5.2. Let X be a hemicompact k-space and let F be a countably based
filter on C(X,R). Then fo € lim,x r) F if and only if fo € limyxr) F and there
is a compact subset K of X such that fo(act(F)\ K) is finite, where act(F) is the
active set of F, and F converges to a constant function z uniformly on fo_l(z) for
each z € fo(act(F) \ K).

3Actually7 the set A was an arbitrary (not necessarily closed) subset of X.
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Proof. As, in a Hausdorff space, each compact set is closed, z(X,R) is stronger
than k(X,R). Assume that fy(act(F)\ K) is infinite for each compact set K. Thus
if (K,,)n, is as in the definition of hemicompactness, then there is a sequence (z,,),
such that x,, ¢ K,, and {fo(z,) : n € N} are all distinct. The set C := {z,, : n € N}
is closed, because it intersection with each compact set is finite, but it is not com-
pact. Consequently, there exist (7)) such that {B(fo(x),n,) : k € N} is pair-
wise disjoint. As F is generated by a decreasing sequence (F},),, there exists
a sequence (er)r and a subsequence (ny)r and fr € F,, such that fy(zp) €

B(fo(w),m) \ B(fol(ar),er). Therefore fo € [C.J,  Blfolwe).en)] ¢ F. As

fi'(2) is closed (for each z), if F converges to fy in z(X,R), then the conver-
gence on f; '(2) is uniform. Conversely, if f, € limyx gy 7 and the condition
holds, then there are exist finitely many closed sets, say, Cy,C4, ..., C,, such that
X = U:ril Cj, and the set Cj is compact, and F converges uniformly to a constant
function on Cj for each 1 <1 < m. O

Corollary 5.3. If X is a hemicompact k-space, and if f = lim,(xr)(fn), then f
is bounded on {x € X : V,, fn(x) # f(z)}.

Corollary 5.4. Let X be a k-space in which a sequence (Kp,), of compact sets is
cofinal for compact sets, and X \ K, is connected for each n. If f = lim_ x r)(fn)
and the active set of (f,) is X, then there is a compact subset K of X such that f
is constant on X \ K.

Proof. By Theorem 5.2, there is n such that f takes finitely many values on X\ K,
say {ri,ra, -+ ,m}. Therefore the sets f~!(r;) \ K, are clopen in a (connected)
set X \ K, for 1 <j <m. Hence m = 1. O

6. CONVERGENCE OF INFIMA AND OF SETS OF MINIMIZERS

In our case, Theorems 4.4 and 4.5 take a particular form. A function f:V —
R =R U {—00, 00} is lower semicontinuous whenever it is continuous with respect
to the lower topology of R (for which {(r,00] : —0o < r < oo} is a base). Therefore
C(V,R) is the space of maps that are continuous from X to R endowed with the
lower topology, in other words, lower semicontinuous functions.

A subset A of V is closed if and only if its indicator function 1 4

—oifze A

(6.1) vaw ={
is continuous for the lower topology of {—o00,c0}. Actually this topology is home-
omorphic to the Sierpinski topology.

The well-known fact, that a function is lower semicontinuous if and only if its
every lower level is closed, links up with Theorem 4.4 as follows: let F be a filter on
C(X,R) and fy € C(X,R). We denote by {F < r} the filter (on the set of closed
subsets of X) generated by {U;cp{f <r}:F € F}. Then

Proposition 6.1. If R is endowed with the lower topology, then fy € limx ) F of
and only if {fo < r} € lim;x g {F <7} for each r € R.

Similarly, Theorem 4.5 specializes to

Proposition 6.2. If R is endowed with the lower topology, then fy € lim, x z) F
if and only if {fo < r} € limy(x g {F <r} for each r € R.



8 SZYMON DOLECKI

The lower convergence of the infima of functions can be interpreted in terms of
a set-open topology. Indeed, if we consider the family o(X) consisting of a single
set (the whole space X), and R is endowed with the lower topology, then

Proposition 6.3. If R is endowed with the lower topology, and fy € lim, x gy F,
then infx fo < suppcrinfrepinfx f.

Proof. Suppose the former and let r < infx fo. Then fy € [X, (r,00]] hence, by
assumption, [X,(r,00]] € F, thus there is F' € F such that inf f > r for each
ferF. O

The topology o(X,R) is coarser than the (lower) closed-open topology z(X,R),
because X is a closed set. Therefore

Corollary 6.4. IfR is endowed with the lower topology, and fo € lim_ x z) F, then
infx fo <supperinfrepinfx f.

It is well-known that the continuous (lower) convergence does not imply the
lower convergence of the corresponding infima, and that some supplementary con-
ditions related to compactness are needed to assure it (e.g., [4]). In some sense,
closed-open topology encompasses such conditions. Of course, all the topologies
and convergences on C(X,R) (for R with the lower topology) that weaker than the
continuous convergence, they do not imply the lower convergence of infima.

On the other hand, the lower convergence of the suprema of functions follows
from the lower pointwise convergence of the corresponding functions. Indeed,

Proposition 6.5. If R is endowed with the lower topology, and fy € lim, y gy F,
then supx fo < suppcrinfrepsupy f.

Proof. If r < supy fo then there is € X such that r < fo(z), thus by the (lower)
pointwise convergence, there is F' € F such that r < f(z) for each f € F, that is,

r <supperinfrepsupy f. O

As the pointwise convergence is the weakest among all the topologies and con-
vergences considered in this paper, each of them implies the lower continuity of
suprema.

If we endow the extended real line R with the upper topology (the sets {[—o0,7) :
—o00 < r < oo} constitute a base), then a mirror proposition holds.

Proposition 6.6. If R is endowed with the upper topology, and fu € lim, x &y F,
then infx fo < infpersupsepinfx f.

Corollary 6.7. Let R be endowed with the upper topology. If a(X) is a col-
lection of families with X< C a(X) and fo € lim,x,z) F, then infx fo <
infrersupsepinfx f.

For simplicity sake, I shall prove the following auxiliary fact. Denote gy :=
fo+7rs,9:=f+rs,G afilter generated by {{f +r;: f € F}: F € F}, where rf
is a real number depending on the function f.

Lemma 6.8. Let R be endowed with the lower topology. If fo € lim,x z) F and
Tfo < Supperinfrerry, then go € limyx ) G-
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Proof. If fo+ry, € [A, (s,00]], then there is Ay € A such that s < fo(z) + ry, for
each x € Ap. On the other hand, there exist sy and s; such that s = sy + s; and
5o < fo(z) for each & € Ay and s; < ry,. By assumption, there is F' € F such that
F C [A,(s0,00]] and s; < ¢ for every f € F. Therefore, for every f € F, there is
Ay € Asuch that so <infa, f, thus s <infa, f+7; for each f € F. Consequently
f+ryelAy, (s,]] for every f € F, that is, [A, (s,]] € G. O

We notice that the set of minimizers of a function f : X — R can be represented
as
Minyx f = {z: f(z) <infx f}.
We will use this representation in establishing a general convergence result for the
sets of minimizers. Denote by Min F the filter generated by {U;cp Min f : F' € F}.

Theorem 6.9. If « is a collection of families that fulfills X <% C o(X), and if
fo € limy(x gy F and infx fo > —oo, then Min fo € lim,(x,¢) Min F.

Proof. As the considered functions f do not take infinite values, infx f < oo for
each f, and since —infx fy < oo, there is F' € F such that —infx f < oo for each
f € F. Therefore Miny f = {x : f(z) —infx f < 0} for all such f. As fo—infx fo €
limy(x r)(f — inf f)F it follows that the O-lower levels converge in a (X, $). O

Another formalism describing the situation above is based on I'-convergence (c.f.
[5]).
REFERENCES

[1] G. Choquet. Convergences. Ann. Univ. Grenoble, 23:55-112, 1947-48.

[2] C. Costantini, L. Hol4, and P. Vitiolo. Tightness, character and related properties of hyper-
space topologies. Topology Appl., 142:245-292, 2004.

[3] S. Dolecki. Constraints stability and moduli of upper semicontinuity. unpublished, 1977.

[4] S. Dolecki. Lower semicontinuity of marginal functions. In Selected Topics in Operations
Research and Mathematical Economics, pages 30—41. Springer-Verlag, 1984.

[5] S. Dolecki. Convergence of minima in convergence spaces. Optimization, 17:553-572, 1986.

[6] S. Dolecki. Active boundaries of upper semicontinuous and compactoid relations; closed and
inductively perfect maps. Rostock. Math. Coll., 54:51-68, 2000.

[7] S. Dolecki. An initiation into convergence theory. Contemporary Mathematics Series A.M.S.,
2007. http://math.u-bourgogne.fr/topo/dolecki/Page/preprints.html, to appear.

[8] S. Dolecki, G. H. Greco, and A. Lechicki. Compactoid and compact filters. Pacific J. Math.,
117:69-98, 1985.

[9] S. Dolecki, G. H. Greco, and A. Lechicki. When do the upper Kuratowski topology (home-
omorphically, Scott topology) and the cocompact topology coincide? Trans. Amer. Math.
Soc., 347:2869-2884, 1995.

[10] S. Dolecki and F. Mynard. Properties transfer between function spaces, hyperspaces and
domains. to appear.

[11] S. Dolecki and S. Rolewicz. Metric characterizations of upper semicontinuity. J. Math. Anal.
Appl., 69:146-152, 1979.

[12] R. Engelking. Topology. Heldermann Verlag, 1989.

[13] M. Escardé, J. Lawson, and A. Simpson. Comparing cartesian closed categories of (core)
compactly generated spaces. Topology Appl., 143:105-145, 2004.

[14] J.R. Isbell. Function spaces and adjoints. Math. Scandinavica, 36:317-339, 1975.

[15] J.R. Isbell. Meet-continuous lattices. Symposia Mathematica, 16:41-54, 1975.

[16] I. Labuda. On a theorem of Choquet and Dolecki. J. Math. Anal. Appl., 126:1-10, 1987.

MATHEMATICAL INSTITUTE OF BURGUNDY, BURGUNDY UNIVERSITY, B.P. 47 870, 21078 D1JON,
FRANCE
E-mail address: dolecki@u-bourgogne.fr



