A SUBSEQUENTIAL FILTER THAT CANNOT BE EXTENDED TO A COUNTABLE HAUSDORFF SEQUENTIAL SPACE

SZYMON DOLECKI

ABSTRACT. Salvador Garcia-Ferreira asked if every subsequential filter on a countable set can be extended to a countable Hausdorff sequential space. A counter-example is constructed.

During his talk at ICTA in Kyoto (3-7 December 2007) professor Salvador Garcia-Ferreira asked if every atomic subsequential topology (on a countable set) can be extended to a countable Hausdorff sequential space. A topological space is $atomic^1$ if it admits at most one non-isolated point. A filter is *subsequential* if it is homeomorphic of a neighborhood filter of a subsequential topology.

Theorem. There exists an atomic Hausdorff subsequential topology of rank 2 that cannot be extended to a Hausdorff sequential topology on a countable set.

Proof. For a maximal almost disjoint family \mathcal{A} of subsets of ω , consider the onepoint compactification of the *Isbell-Mrówka* topology on the disjoint union $X := \{\infty\} \cup \mathcal{A} \cup \omega$. This is a Hausdorff sequential topology of order 2. Hence its restriction τ_0 to $\{\infty\} \cup \omega$ is subsequential and atomic. Denote by \mathcal{F} the restriction to ω of the neighborhood filter of ∞ .

Suppose that B is a countable set such that there exists a Hausdorff sequential topology τ on the disjoint union $Y := \{\infty\} \cup B \cup \omega$ so that the restriction of τ to $\{\infty\} \cup \omega$ is equal to τ_0 . Let $\mathcal{N}_{\tau_0}(y)$ denote the trace on ω of the neighborhood filter $\mathcal{N}_{\tau}(y)$.

Because τ is Hausdorff, for every $y \in B$ the filters $\mathcal{N}_{\tau_0}(y)$ and \mathcal{F} do not mesh. Therefore there exists a countable subfamily \mathcal{A}_0 of \mathcal{A} such that for each $y \in Y$ there is a finite subfamily \mathcal{B}_y of \mathcal{A}_0 such that $\bigcup_{A \in \mathcal{B}_y} A \in \mathcal{N}_{\tau}(y)$. Let \mathcal{A}_1 be another countably infinite subfamily of \mathcal{A} so that \mathcal{A}_0 and \mathcal{A}_1 have no common element. Thus there are two disjoint subsets E_0 and E_1 of ω such that $A \setminus E_0$ is finite for each $A \in \mathcal{A}_0$ and $A \setminus E_1$ is finite for each $A \in \mathcal{A}_1$.

If $\infty \in \operatorname{cl}_{\tau_0} H \subset \operatorname{cl}_{\tau} H$ then there exists a sequential cascade T and a multisequence $f: T \to Y$ such that $f(\max T) \subset H$ and $\infty \in \lim_{\tau} f$, thus $\infty \in \lim_{\tau_0} \int f$, where $\int f$ is the contour of f (see e.g., [1]). In other words, each filter on ω that converges to ∞ in τ , contains E_0 . This implies that $E_0 \in \mathcal{F}$. On the other hand, $E_1 \in \mathcal{F}^{\#}$, which is a contradiction with $E_0 \cap E_1 = \emptyset$.

References

^[1] S. Dolecki. Multisequences. Quaestiones Mathematicae, 29:239-277, 2006.

Date: 17 December 2007.

¹called also *prime*.

SZYMON DOLECKI

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE, UNIVERSITÉ DE BOURGOGNE, B. P. 47870, 21078 DIJON, FRANCE E-mail address: dolecki@u-bourgogne.fr