A SUBSEQUENTIAL FILTER THAT CANNOT BE EXTENDED TO A COUNTABLE HAUSDORFF SEQUENTIAL SPACE

SZYMON DOLECKI

Abstract

Salvador Garcia-Ferreira asked if every subsequential filter on a countable set can be extended to a countable Hausdorff sequential space. A counter-example is constructed.

During his talk at ICTA in Kyoto (3-7 December 2007) professor Salvador GarciaFerreira asked if every atomic subsequential topology (on a countable set) can be extended to a countable Hausdorff sequential space. A topological space is $a^{\text {atomic }}{ }^{1}$ if it admits at most one non-isolated point. A filter is subsequential if it is homeomorphic of a neighborhood filter of a subsequential topology.

Theorem. There exists an atomic Hausdorff subsequential topology of rank 2 that cannot be extended to a Hausdorff sequential topology on a countable set.

Proof. For a maximal almost disjoint family \mathcal{A} of subsets of ω, consider the onepoint compactification of the Isbell-Mrówka topology on the disjoint union $X:=$ $\{\infty\} \cup \mathcal{A} \cup \omega$. This is a Hausdorff sequential topology of order 2. Hence its restriction τ_{0} to $\{\infty\} \cup \omega$ is subsequential and atomic. Denote by \mathcal{F} the restriction to ω of the neighborhood filter of ∞.

Suppose that B is a countable set such that there exists a Hausdorff sequential topology τ on the disjoint union $Y:=\{\infty\} \cup B \cup \omega$ so that the restriction of τ to $\{\infty\} \cup \omega$ is equal to τ_{0}. Let $\mathcal{N}_{\tau_{0}}(y)$ denote the trace on ω of the neighborhood filter $\mathcal{N}_{\tau}(y)$.

Because τ is Hausdorff, for every $y \in B$ the filters $\mathcal{N}_{\tau_{0}}(y)$ and \mathcal{F} do not mesh. Therefore there exists a countable subfamily \mathcal{A}_{0} of \mathcal{A} such that for each $y \in Y$ there is a finite subfamily \mathcal{B}_{y} of \mathcal{A}_{0} such that $\bigcup_{A \in \mathcal{B}_{y}} A \in \mathcal{N}_{\tau}(y)$. Let \mathcal{A}_{1} be another countably infinite subfamily of \mathcal{A} so that \mathcal{A}_{0} and \mathcal{A}_{1} have no common element. Thus there are two disjoint subsets E_{0} and E_{1} of ω such that $A \backslash E_{0}$ is finite for each $A \in \mathcal{A}_{0}$ and $A \backslash E_{1}$ is finite for each $A \in \mathcal{A}_{1}$.

If $\infty \in \mathrm{cl}_{\tau_{0}} H \subset \mathrm{cl}_{\tau} H$ then there exists a sequential cascade T and a multisequence $f: T \rightarrow Y$ such that $f(\max T) \subset H$ and $\infty \in \lim _{\tau} f$, thus $\infty \in \lim _{\tau_{0}} \int f$, where $\int f$ is the contour of f (see e.g., [1]). In other words, each filter on ω that converges to ∞ in τ, contains E_{0}. This implies that $E_{0} \in \mathcal{F}$. On the other hand, $E_{1} \in \mathcal{F}^{\#}$, which is a contradiction with $E_{0} \cap E_{1}=\varnothing$.

References

[1] S. Dolecki. Multisequences. Quaestiones Mathematicae, 29:239-277, 2006.

[^0]Institut de Mathématiques de Bourgoqne, Université de Bourgogne, B. P. 47870 , 21078 Dijon, France

E-mail address: dolecki@u-bourgogne.fr

[^0]: Date: 17 December 2007 .
 ${ }^{1}$ called also prime.

