
ELIMINATION OF COVERS IN COMPLETENES

SZYMON DOLECKI

Abstract. It is shown that nonadherent filters can totally eliminate
covers from topological arguments, which enhances the unity of conver-
gence approach. In particular, cocomplete collections of nonadherent
filters replace complete collections of covers. Arhangel’skii-Froĺık char-
acterization of Čech complete spaces and its generalizations by Froĺık
are extended and refined. Hereditary completeness is dually character-
ized (in terms of pavements of the upper Kuratowski convergence). As a
corollary a characterization by Dolecki and Mynard of the pretopologic-
ity of the upper Kuratowski convergence (which generalizes to arbitrary
convergences the characterization of Hofmann and Lawson) is recovered.

1. Introduction

The elimination mentioned in the title is founded on the fact that a family
P is a cover of a subset A of a convergence space if and only if the adher-
ence of Pc = {P c : P ∈ P} is disjoint from A. Therefore covers can be
entirely eliminated from definitions and arguments by the dual concept of
non-adherent families of sets. As numerous variants of compactness and of
completeness can be defined with the aid of ideal (that is, closed for finite
unions and subsets) covers, they can be also expressed in terms of non-
adherent filters. The latter approach has been widespread in relation with
miscellaneous notions of compactness, but it seems to have been absent from
the study of completeness.

In this paper I use the concept of complete collection P of covers (such
that, each filter that contains an element of every cover from P is adherent),
which is similar to that of Froĺık [6], and a dual notion of collection of
cocomplete non-adherent filters (that is, of families of complements of covers
from a complete collection). This dual point of view can often simplify
arguments; one can judge it by what follows. In case of completeness of
the type of Čech and Froĺık, the dual approach enabled me to improve
some results of the latter in several ways. On one hand, I prove (without
any regularity assumption), that a dense κ-complete subset of a Hausdorff
weakly diagonal convergence is Gκ (an intersection of κ many open sets)
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and on the other, every Gκ-subset of a regular κ-complete convergence is κ-
complete (without any diagonality, a fortiori, topologicity, assumption). My
results generalize also the classical characterization of Čech-completeness by
Arhangel’skii and Froĺık (this corresponds to the case κ = ℵ0). Diagonality
(which is a property somewhat weaker than topologicity) and regularity
are two antithetic properties, one implying the other in the presence of
compactness and Hausdorffness.

(Open) hereditary κ-completeness of an epitopology is equivalent to the
existence of a pavement of cardinality κ at every element of the upper Kura-
towski convergence. As a corollary, I recover a result of [4], which generalizes
that of [7], that an epitopology is topologically core-compact if and only if
the upper Kuratowski convergence is a pretopology.

2. Convergences

A convergence space is a set X endowed with a relation lim between fil-
ters on X and elements of X such that F ⊂ G implies limF ⊂ limG, and
x ∈ lim{x}↑ for every x ∈ X (where {x}↑ is the principal ultrafilter de-
termined by x). If X, Y are convergence spaces, then a map f : X → Y
is continuous if f(limX F) ⊂ limY f(F) for every filter F on X.1 This
naturally entails the definitions of order (finer, coarser), initial and final
convergences, quotient, product, and so on. A convergence is a pseudotopol-
ogy if limF =

⋂
U∈βF adhU for every filter F , where βF denotes the set of

all ultrafilters that are finer than F . A convergence is Hausdorff if the limit
of each filter is at most a singleton. A subset O of a convergence space is
open if O ∩ limF 6= ∅ implies O ∈ F ; closed, if it is the complement of an
open subset.

The adherence adhH of a family H of subsets of a convergence space is
the union of the limits of the filters F that mesh with H (in symbols, F#H),
that is, such that F ∩H 6= ∅ for every F ∈ F and H ∈ H. In other words,

adhH =
⋃
F#H

limF .

In particular, the adherence adhH of a subset H of convergence is defined
as the adherence of the principal filter of H. I denote by adh\H = {adhH :
H ∈ H}. Recall that ifH is a family of subsets of a set X, thenHc = {X\H :
H ∈ H}. The inherence inhP of a family P of subsets of X is defined by
inhP = (adhPc)c and inhP = inhP whenever {P} ⊂ P ⊂ {P}↑. As usual,
inh\ P = {inh P : P ∈ P}.

If G(y) is a family of subsets of X for every y ∈ Y , and A is a family of
subsets of Y , then

G(A) =
⋃

A∈A

⋂
y∈A

G(y)

1f(F) stands for the filter generated by {f(F ) : F ∈ F}.
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is the contour of G(·) along A. In particular, if A = {A} or A = {A}↑,
then we abridge G(A) =

⋂
y∈A G(y). A set V is a vicinity of a set A with

respect to a convergence θ if adhθ V c ∩ A = ∅. The set of vicinities of A
with respect to θ is denoted by Vθ(A); in particular, Vθ(x) stands for the
set of vicinities of the singleton {x}. If A is a family of subsets of X, then
Vθ(A) =

⋃
A∈A Vθ(A) is the contour of Vθ along A. In the sequel I shall use

the following equivalence (see [2, Corollary 2.2]):

(2.1) H#Vθ(A) ⇔ adh\
θH#A.

A convergence ξ on X is diagonal (respectively, weakly diagonal) if x0 ∈
limξ F and if x ∈ limξ G(x) for every x ∈ X, then x0 ∈ limξ G(F) (respec-
tively, x0 ∈ adhG(F ) for every F ∈ F). Of course, each topology is diagonal,
and every diagonal convergence is weakly diagonal. E. Lowen-Colebunders
proved in [8] that the adherence of every filter is closed if and only if the
convergence is weakly diagonal.

A convergence is regular if

limF ⊂ lim(adh\F)

for every filter F . A convergence ξ on a set X is θ-regular (where θ is
another convergence on X) whenever limξ F ⊂ limξ(adh\

θ F) for every filter
F . If a convergence ξ is θ-regular, then for every family H,

adhξ Vθ(H) ⊂ adhξ H.

If moreover ξ is a pseudotopology, then the converse also holds.
A family A of subsets of a convergence space is compactoid, respectively,

compact (see, for example, [1]) if every filter G that meshes with A has
non-empty adherence, respectively, adhG meshes A. In particular, a filter is
compactoid if every finer ultrafilter is convergent. A subset of a convergence
space is compactoid (compact) if the principal filter of the underlying set is
compactoid (respectively, compact); locally compactoid (locally compact) if
every convergent filter contains a compactoid (respectively, compact set).

3. Elimination of covers and pseudocovers

A family P of subsets of a convergence space X is a cover of a subset A
of X if every filter convergent to an element of A has a common element
with P.2 If we specialize this notion of cover for topologies, which are such
convergences in which a filter F converges to an element x if and only if
O ∈ F for every open set O that contains x, then we get the condition⋃

P∈P intP ⊃ A. Clearly for families P of open sets, P is a cover of A in the
present sense if and only if it is in the classical one. Therefore the new notion
can be seen as an extension of the classical one to arbitrary (not necessarily
open) families of sets. Moreover, various concepts related to compactness

2A family is a cover of a convergence (space X) if it is a cover of the improper subset
X of X.
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and to completeness, which are usually introduced in the language of open
covers, remain unaltered if we express them in terms of arbitrary covers.3

Non-adherent families are complementary with respect to covers.

Theorem 3.1. A family P is a cover of A if and only if

(3.1) adhPc ∩A = ∅.

Proof. By definition, (3.1) means that if a filter F converges to an element
of A then F does not mesh with Pc, that is, there exist F ∈ F and P ∈ P
such that F ∩P c = ∅, equivalently F ⊂ P , that is, F ∩P 6= ∅, which means
that P is a cover of A.

Notice that {X} is a cover of every convergence on X. Of course, {X}c =
{∅}, and clearly adh{∅} = ∅.

If P is a family of sets, then P∪↓ denotes the (possibly degenerate) ideal
generated by P, that is, S ∈ P∪↓ whenever there exists R ∈ [P]<ω such that
S ⊂

⋃
R. In turns out that in the definitions of miscellaneous variants of

compactness and of completeness, one can use either all covers or the ideal
covers without altering the meaning.4

A family P of subsets of a convergence space is a pseudocover of a subset
A of a convergence space X if every ultrafilter convergent to an element of A
contains an element of P. It is immediate that a family P is a pseudocover
of A if and only if for every filter F that converges to an element of A
there is a finite subfamily P0 of P such that

⋃
P0 ∈ F . Of course, every

cover is a pseudocover, and each additive pseudocover is a cover. If P is
a subset of a topological space X such that clP ∩ cl P c 6= ∅, then {P, P c}
is a pseudocover, but not a cover, of X, because the neighborhood filter
of x ∈ cl P ∩ cl P c contains neither P nor P c. An open pseudocover in a
topological space is a cover. Indeed, let P be an open pseudocover of A in
a topological space, that is, for each x ∈ A there is a finite subfamily P0 of
P such that x ∈ int(

⋃
P0), but since the elements of P0 are open, there is

P ∈ P0 such that x ∈ P . It is straightforward that

Proposition 3.2. P is a pseudocover of A if and only adhH ∩ A = ∅ for
every filter H ≥ Pc.

3For example, consider the property: for every cover of A there exists a finite subcover
of A. Of course, this property implies compactness of A: for every open cover of A
there exists a finite subcover of A. Conversely, if P is a cover of a compact set A, then
{int P : P ∈ P} is an open cover of A, hence there is a finite subfamily P0 of P such that
{int P : P ∈ P0} is a cover of A, thus P0 is a (finite) cover of A.

4For example, if A is compact, then obviously for every ideal cover R of A, there is a
finite subfamily R0 of R that is a cover of A. But

S
R0 is also a cover of A, and since

R is an ideal,
S
R0 ∈ R, so that there is an element R of R such that {R} is a cover of

A. Conversely, if the last property holds and P is an open cover of A, then P∨↓ is also a
cover of A, thus there is R ∈ P∨↓ such that {R} is a cover of A. This means that there
is a finite subfamily P0 of P such that R ⊂

S
P0, and since the space is topological this

implies that A ⊂
S
P0. Therefore if F converges to x ∈ A, then there is P ∈ P0 such that

x ∈ P and P ∈ F because P is open.



ELIMINATION OF COVERS IN COMPLETENES 5

4. Complete collections

If P is a collection of families of subsets (of a given set), then a filter F
is P-Cauchy if F ∩ P 6= ∅ for every P ∈ P. A collection P of families of
subsets of a convergence space is complete if every P-Cauchy filter has non
empty adherence.

Let ξ, θ be convergences on X. A collection P is called θ-openly ξ-complete
if every θ-open P-Cauchy filter is ξ-adherent. Every ξ-complete collection is
θ-openly ξ-complete for every θ. If ξ = θ is fixed, then we say openly com-
plete. I will postpone further comparison of the two completeness properties
to subsequent sections. In [6] Froĺık uses the term complete for what I call
here openly complete.

Every Cauchy filter with respect to a complete collection is compactoid.
Indeed, if F is P-Cauchy then each G ≥ F is P-Cauchy, hence if P is complete,
then adhG 6= ∅, that is, F is compactoid.

As we shall see later, every convergence admits a complete collection of
covers. What makes the difference is the cardinality that such a collection
can have.

A family P (of subsets of a convergence space) is called complete if the
collection {P} is complete.

If P is complete, then for every choice PP ∈ P with P ∈ P, the set⋂
P∈P PP is compactoid (possibly empty). In fact, every filter on

⋂
P∈P PP

is P-Cauchy. In particular, if P is a complete family and P ∈ P then P is
compactoid.

Let P, R be collections of families of sets. Then R is a refinement of P if
for every P ∈ P there is R ∈ R such that R is a refinement of P.

Proposition 4.1. A refinement of a complete collection is complete.

Proof. Let R be a refinement of a complete collection P. Let H be R-Cauchy
and let P ∈ P. Then there exists R ∈ R such that R is a refinement of P.
As H is R-Cauchy, H∩R 6= ∅ hence H∩P 6= ∅. Therefore H is P-Cauchy,
and adherent by the completeness of P.

Recall that P∪↓ denotes the (possibly degenerate) ideal generated by P.

Proposition 4.2. A collection P of covers is complete if and only the col-
lection P∼ = {P∪↓ : P ∈ P} is complete.

Proof. Let P be complete and let F be a filter such that F ∩ P∪↓ 6= ∅ for
each P ∈ P. If U ∈ β(F) then U∩P 6= ∅ and thus ∅ 6= limU ⊂ adhF which
means that P∼ is complete. Conversely, if P∼ is complete and F ∩ P 6= ∅,
hence F ∩ P∪↓ 6= ∅, for each P ∈ P and thus adhF 6= ∅.

Let P,R be families of subsets of a convergence space; R is a strong
refinement of P if adh\R is a refinement of P. A collection P (of families
of subsets) of a convergence space is said to be regular if for every P ∈ P
there is R ∈ P that is a strong refinement of P. A family P of subsets of
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a convergence space is called regular if the collection {P} is regular. For
example, an ideal generated by a family consisting of closed sets is regular.

Lemma 4.3. If P is a complete regular collection, and H is P-Cauchy, then
adh\H is also P-Cauchy.

Proof. Let F be P-Cauchy, where P is such a collection. Then for every
P ∈ P there exists RP ∈ P that refines P. As P is regular, for every P ∈ P
there is RP ∈ F ∩ RP and P ∈ P such that adhRP ⊂ P . Therefore
adh\F ∩ P 6= ∅ for every P ∈ P and thus is P-Cauchy.

If a convergence is regular, then each cover admits a strong refinement
that is a cover. More generally,

Proposition 4.4. If X is a subset of a regular convergence space Y and P
is a cover of X, then there is a strong refinement of P, which is a cover of
X.

Proof. If x ∈ X ∩ limY F , then x ∈ limY (adh\
Y F) by the regularity of Y ,

thus there is FF ∈ F and PF ∈ P such that adhY FF ⊂ PF because P is a
cover of X. The family of FF , where F are all the filters containing X and
convergent in Y , is a strong refinement of P that covers X.

5. Convergence of Cauchy filters

A collection P of families of sets is narrow if for every choice PP ∈ P the
set

⋂
P∈P PP is at most a singleton.

Lemma 5.1. If P is a narrow regular collection, then the adherence of each
P-Cauchy filter is at most a singleton.

Proof. By the regularity of P, for every P ∈ P there is RP ∈ P such that
adh\RP is a refinement of P. If H is P-Cauchy, then for each P ∈ P there is
HP ∈ H ∩RP . Therefore adhH ⊂

⋂
P∈P adhHP ⊂

⋂
P∈P PP is a singleton

by the narrowness of P.

Proposition 5.2. A convergence that admits a narrow regular collection of
covers, is Hausdorff.

Proof. Let F be a convergent filter, and P be a narrow regular collection
of covers. Since each element of P is a cover, F is P-Cauchy, and since
P is narrow and regular, adhF is at most a singleton by Lemma 5.1. As
∅ 6= limF ⊂ adhF , the proof is complete.

Example 5.3. Let X be a metrizable space, d be a compatible metric on X
and let

Bd(x, r) = {w ∈ X : d(w, x) < r},
and Pn = {Bd(x, 1

n) : x ∈ X, n < ω}. Then {Pn : n < ω} is a narrow,
regular sequence of covers of X.

Proposition 5.4. A pseudotopology that admits a complete narrow regular
collection of covers, is regular.
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Proof. If P is such a collection and x ∈ limF , then F is P-Cauchy, because P
consists of covers. As P is narrow and regular, by Proposition 5.2, limF =
{x}. By Lemma 4.3, adh\F is P-Cauchy, thus by completeness, adh\F
is compactoid, and by Lemma 5.1, {x} = limF ⊂ adh(adh\F) = {x}.
Therefore ∅ 6= adhU = limU ⊂ {x} for every ultrafilter U finer than adh\F .
Hence by pseudotopologicity, {x} = lim(adh\F).

Theorem 5.5. If P is a complete, narrow, regular collection of covers of a
pseudotopology, then every P-Cauchy filter is convergent.

Proof. Let H be a P-Cauchy filter. Then by Lemma 5.1 there is such an
element x of the convergence space that adhH = {x}. If U is an ultrafilter
finer than H, then U is also P-Cauchy, hence by completeness, ∅ 6= adhU ⊂
adhH = {x}. By pseudotopologicity,

{x} =
⋂

U∈βH
adhU ⊂ limH ⊂ adhH = {x}.

Corollary 5.6. If a collection P of regular covers of a pseudotopological
space is complete and narrow, then every P-Cauchy filter converges.

6. Cocomplete collections of filters

By virtue of Theorem 3.1 a family is a cover of a convergence space if
and only if the family of complements has empty adherence. This duality
between covers and non adherent families enables us to eliminate covers
altogether, in particular, in case of completeness. As by Proposition 4.2,
completeness can be investigated by using only ideal covers, the only fam-
ilies of complements in a study of completeness are filters. Notice that the
collection 2X of all subsets of X is an (improper) ideal cover of every con-
vergence on X. As (2X)c = 2X , the degenerate filter 2X is non-adherent for
every convergence on X.

A collection G of filters on a convergence space is said to be cocomplete
if every filter H that does not mesh any G ∈ G is compactoid (equivalently,
adherent). Now a filter is compactoid if and only if each finer ultrafilter
converges. Hence G is cocomplete if and only if for every non-convergent
ultrafilter U there exists G ∈ G such that U ≥ G. Therefore,

Proposition 6.1. A collection G of non-adherent filters is cocomplete if
and only if convergent ultrafilters are precisely those meshing no element of
G.

Proposition 6.2. A collection G of filters is cocomplete if and only if G∗
is complete.

Proof. Let G be cocomplete and let F be a filter such that F ∩ Gc 6= ∅ for
every G ∈ G. This means that there is G ∈ G such that Gc ∈ F , that is, F
and G do not mesh. Therefore F is compactoid by the cocompleteness of G,
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hence adhF 6= ∅. Conversely, assume that G∗ is complete and F is a filter
that meshes with no G ∈ G, equivalently F ∩Gc 6= ∅ for every G ∈ G. Thus
U ∩ Gc 6= ∅ for each U ∈ β(F) and every G ∈ G. The completeness of G∗
implies that adhU 6= ∅, so that F is compactoid.

Therefore there is a duality between complete collections (of ideals) and
cocomplete collections (of filters), and between collections of covers and col-
lections of non-adherent families. We may add to that another observation:
R is a refinement of P if and only if for every F ∈ P∗ there exists G ∈ R∗
such that G ≤ F , that is, whenever the collection R∗ is coarser than the
collection P∗.

Proposition 6.3. Suppose that a convergence is θ-regular. If F is a cocom-
plete collection of filters, then {adh\

θ F : F ∈ F} is also cocomplete.

Proof. Let U be an ultrafilter that does not mesh adh\
θ F for every F ∈ F,

equivalently Vθ(U) does not mesh F for every F ∈ F, hence adhVθ(U) 6= ∅
by the cocompleteness of F. By θ-regularity, adhVθ(U) ⊂ adhU showing
the cocompleteness of {adh\

θ F : F ∈ F}.

By Proposition 6.2, if a collection P in a θ-regular space is complete, then
{inh\

θ P : P ∈ P} is complete.
A collection of filters is called θ-closedly ξ-cocomplete if F∗ is θ-openly

ξ-complete. If F is a collection, then

clθ F = {cl\θ F : F ∈ F}.
Proposition 6.4. If clθ F is cocomplete, then F is θ-closedly cocomplete.

Proof. If H = Oθ(H) does not mesh F for each F ∈ F, then H does not
mesh cl\θ F for each F ∈ F, hence adhH 6= ∅.

Theorem 6.5. In a regular topology open completeness coincides with com-
pleteness.

Proof. Let F be a closedly cocomplete collection of non-adherent filters. We
shall see that cl F is a cocomplete collection of non-adherent filters. If H
does not mesh cl\F for every F ∈ F, equivalently O(H) does not mesh F
for every F ∈ F and thus adhO(H) 6= ∅. By regularity, adhO(H) ⊂ adhH,
hence cl F is a cocomplete collection. By topologicity adhF = adh cl\F for
every filter F , thus all the elements of cl F are not adherent.

7. Completeness number

Let κ be a cardinal. A convergence space is κ-complete if there is a
complete collection, of cardinality κ, of covers. In other words, a convergence
is κ-complete whenever there exists a cocomplete collection of cardinality κ
of non-adherent filters.

Proposition 7.1. If Xα is a κα-complete convergence for α < λ, then∏
α<λ Xα is κ-complete, where κ =

∑
α<λ κα.
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Proof. If Fα is a cocomplete collection of non-adherent filters on Xα, then
let F consist of all those filters on X =

∏
α<κ Xα that are generated by

[Fβ] = {
∏
α<λ

Fα : Fβ ∈ Fβ , α 6= β ⇒ Fα = Xα},

with Fβ ∈ Fβ. The cardinality of F is
∑

α<λ κα. Now it is enough to observe
that a filter H on X meshes with [Fβ] if and only the projection pβ(H) on
Xβ meshes with Fβ. Therefore if an ultrafilter U is finer than an element of
F, then there is β such that its projection on Xβ is finer then an element of
Fβ , hence U does not converge, because Fβ consists of non-adherent filters;
on the other hand, if an ultrafilter U meshes with no element of F, then
for every β < λ, its projection on Xβ meshes with no element of Fβ , hence
converges in Xβ by the cocompleteness of Fβ , so that U converges.

A convergence is called openly κ-complete if there exists an openly com-
plete collection of covers of cardinality κ (equivalently, a closedly cocomplete
collection of cardinality κ of non-adherent filters). As there are not more
complete collections of covers than openly complete collections of covers,
every κ-complete convergence is openly κ-complete. As the projection of an
openly based filter from a product convergence space onto every component
space is openly based, an adaptation of the proof above yields a generaliza-
tion of [6, Theorem 2.10] which was established for products of completely
regular topological spaces.

Proposition 7.2. If Xα is a openly κα-complete convergence for α < λ,
then

∏
α<λ Xα is openly κ-complete, where κ =

∑
α<λ κα.

The least cardinal κ such that a convergence is κ-complete is called the
completeness number. This is also the least cardinal for which there exists
a cocomplete collection (of that cardinality) of non-adherent filters. Analo-
gously one can define the open completeness number (of course, it is always
less than or equal to the completeness number).

Every convergence is κ-complete for some cardinal κ. Indeed, each con-
vergence on a set X is 22card(X)

-complete. In fact, the collection of all non-
adherent ultrafilters on X is a cocomplete collection and its cardinality is
not greater than that of all ultrafilters on X. We infer that the completeness
number is well defined.

Proposition 7.3. The completeness number is finite (equivalently, less than
or equal to 1) if and only if the convergence is locally compactoid.

Proof. If there is a complete cover, then its elements are compactoid, so that
every convergent filter contains a compactoid set. If now there is a finite
complete cover, say, {P1,P2, . . . ,Pn}, then the family

{
n⋂

k=1

Pk : (P1, P2, . . . , Pn) ∈
n∏

k=1

Pk}
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is also a complete cover. If a convergence is locally compactoid, then the
family of all compactoid sets is a complete cover.

If K stands for the family of compactoid sets (of a fixed convergence),
then Kc is the filter of cocompactoid sets (the complements of compactoid
sets) that we shall call the cocompactoid filter. The cocompactoid filter is
degenerate if and only if the convergence is compact. Indeed, this happens if
and only if the whole space (the complement of the empty set) is compactoid,
equivalently, compact.

The cocompactoid filter is cocomplete in every convergence, because an
ultrafilter that does not mesh with it, contains a compactoid set, hence
converges.

Proposition 7.4. A convergence is locally compactoid if and only the co-
compactoid filter is non-adherent.

Proof. If Kc is non-adherent, and an ultrafilter U converges, then U does not
mesh with Kc, hence U contains a compactoid set, so that the convergence
is locally compactoid. Conversely, if a convergence is locally compactoid,
then every convergent ultrafilter contains a compactoid set, hence does not
mesh with Kc, which means that Kc is non-adherent.

I say that a convergence is Čech-complete if its completeness number
is ℵ0. Originally Čech-completeness was defined as a property of Tychonoff
topological spaces in different terms (see the next section); the property used
here to extend the definition to convergence spaces, was a characterization
(Arhangel’skii-Froĺık theorem [5, Theorem 3.9.2]).

8. Subspaces

In this section I shall discuss the relation between the completeness num-
ber and the property of being homeomorphic to an intersection of a family,
of certain cardinality, of open subsets.

A locally compact dense subset of a Hausdorff topological space is open
[5, Theorem 3.3.9], and each open subset of a locally compact space is locally
compact [5, Theorem 3.3.8]. In Engelking’s terminology, a locally compact
space is T1, hence by [5, Theorem 3.3.1] Tychonoff.

By definition, a topological space is Čech-complete if it is Tychonoff, and
is a Gδ subset (that is, a countable intersection of open subsets) of its Stone-
Čech compactification [5]. A theorem of Froĺık and Arhangel’skii [5, The-
orem 3.9.2] says that a Tychonoff space is Čech-complete if and only if it
admits a countable complete collection of (open) covers, (that is, according
to our terminology, if it is ℵ0-complete).

In other words, in the class of Tychonoff spaces, 1-complete spaces are
open subsets of their extensions, and ℵ0-complete spaces are Gδ-subsets of
their extensions. In [6] Froĺık generalizes the two facts mentioned above,
showing a relationship between open κ-completeness and Gκ property for
an arbitrary cardinal κ.
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A subset X of a convergence space Y is called a Gκ-subset (of Y ) if it is
the intersection of κ vicinities of X in Y ; it is a topologically Gκ-subset if it is
the intersection of κ open sets. In view of this definition, topologically Gℵ0-
sets are classically called Gδ-sets. Of course, each topologically Gκ-subset is
a Gκ-subset.

By definition, a subset A of a convergence space X is dense if adh A = X.

Theorem 8.1. A dense κ-complete subset of a Hausdorff weakly diagonal
convergence is a topologically Gκ-subset.

Proof. Let X be a dense κ-complete subset of Y , where Y is a Hausdorff
weakly diagonal convergence. Let G be a cocomplete collection of non-
adherent filters on X. Then

(8.1) Y \X =
⋃
G∈G

adhY G.

Indeed, X ∩ adhY G = ∅ for every G ∈ G, because G is non-adherent in X,
thus ⊃ holds in (8.1). Conversely, if y ∈ Y \X, then because X is dense
in Y and Y is Hausdorff, there is an ultrafilter U on X such that {y} =
limY U = adhY U and thus U is non-adherent in X. By the completeness of
G, there is G ∈ G such that U#G, thus y ∈ adhY G, and hence ⊂ holds in
(8.1). Because Y is weakly diagonal, by [8, Theorem 1.3] adhY G is closed
for every filter G, and thus X is a topologically Gκ-set.

A subset A of a convergence X is called openly dense if for every x ∈ X
there exists an openly based filter on A that converges to x. Each openly
dense set is dense, and the converse holds in topological spaces.

Theorem 8.2. An openly dense openly κ-complete subset of a Hausdorff
weakly diagonal convergence is Gκ.

Proof. As before if G is an openly cocomplete collection of non-adherent
filters, then ⊃ holds in (8.1). Conversely, if y ∈ Y \X, then because X is
openly dense in Y and Y is Hausdorff, there is an ultrafilter U on X such that
{y} = limY OX(U) = adhY OX(U). Therefore by the open completeness of
G, there is G ∈ G such that OX(U)#G, and thus y ∈ adhY G, hence ⊂ holds
in (8.1).

Theorem 8.3. Every Gκ-subset of a regular κ-complete convergence space
is κ-complete.

Proof. Let {Hα : α < κ} be a cocomplete collection of non-adherent filters of
a regular convergence space Y , and let X =

⋂
α<κ Vα, where Vα ∈ VY (X) for

each α < κ. In other words, adhY V c
α ∩X = ∅ and adhY Hα = ∅ for every

α < κ. Hence adhY (Hα ∧ V c
α) ∩X = ∅, and if we set Zα = VY (Hα ∧ V c

α),
then adhY Zα ∩X = ∅ by the regularity of Y . The collection {Zα : α < κ}
is cocomplete on X. Indeed, let U be an ultrafilter on X that does not mesh
with Zα for each α < κ. In particular, U does not mesh with Hα for α < κ.
Because {Hα : α < κ} is cocomplete, limY U 6= ∅. On the other hand, U
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does not mesh with VY (V c
α) for α < κ, that is, for every α < κ there is

Uα ∈ U such that adhY Uα ⊂ Vα. We can conclude that

y ∈ limY U ⊂
⋂
α<κ

adhY Uα ⊂
⋂
α<κ

Vα = X,

that is, y ∈ adhX U , which proves that X is κ-complete.

It follows from the two theorems above that in Hausdorff regular weakly
diagonal κ-complete convergence spaces, each Gκ set is openly κ-complete.
The two theorems of this section imply in case κ = ℵ0 the Arhangel’skii-
Froĺık theorem [5].

Corollary 8.4. A space is Čech-complete if and only if it is a Gδ subspace
of its every compactification.

Theorem 8.3 slightly improves [6, Theorem 2.4] of Z. Froĺık who proved
that every openly κ-complete Hausdorff topological space is a Gκ-subset of
every Hausdorff extension (every κ-complete collection is openly κ-complete).

Theorem 8.3 generalizes, from Hausdorff topologies to arbitrary conver-
gences, [6, Theorem 2.5], which says that every openly Gκ-subset of a regular
openly κ-complete topology is openly κ-complete. In fact in case of regular
topologies open completeness and completeness coincide by Theorem 6.5.

Froĺık proved that the assumption of regularity in Theorem 8.3 must not
be dropped. Actually he showed that neither a closed nor an open subset
of a Gκ-space need be a Gκ-space (a Hausdorff topological space a Gκ-
space if it is a Gκ-subset of every Hausdorff topology in which it is densely
homeomorphically embedded).

By Theorem 8.1, every κ-complete Hausdorff topology is a Gκ-space. It is
straightforward that a closed subset of a κ-complete (not necessarily Haus-
dorff) convergence space is κ-complete.

9. Completion

Every convergence can be easily completed, that is, for a given cardinal
κ, it can be extended to (that is, densely isomorphically embedded in) a κ-
complete convergence. In particular, every convergence can be extended to
a locally compactoid convergence. The existence of an extension that fulfils
some separation axioms, like Hausdorffness or regularity, is another, often
tougher, problem. Moreover, in general an extension of a topological space
need not be topological.

If X is a convergence space and F is a collection of non-adherent filters
on X, then we define on the disjoint union X ∪ F a convergence, called
the simple extension of X over F and denoted by X ∧ F. An element F
of F can be considered either as a filter on X or as an element of X ∪ F.
Therefore, in order to distinguish these two usages, I shall write F [ in the
second case. The convergence X ∧ F is defined as follows: if x ∈ X, then
x ∈ limX∧F G if and only if x ∈ limX G, and if F ∈ F and G is a filter
on X, then F [ ∈ limX∧F G whenever F ≤ G. Notice that F is a discrete
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closed subset of X ∪F, because the only convergent filters on F are principal
ultrafilters, and that X is dense in X ∪ F.

It is straightforward that the simple extension of a pseudotopology (re-
spectively, a pretopology) over any collection of non-adherent filters is a
pseudotopology (respectively, a pretopology). However, the simple exten-
sion of a topology over F is a topology if and only if the elements of F
are openly based filters. The simple extension of a convergence over F is
Hausdorff if and only if the convergence is Hausdorff and F is a collection of
non-adherent pairwise disjoint filters (that is, if F0,F1 ∈ F then there exist
F0 ∈ F0 and F1 ∈ F1 such that F0∩F1 = ∅). Simple extensions are typically
non-regular; the simple extension of a regular convergence space X over F is
regular whenever every element F of F is regular (that is, F = adh\F) and
for every filter G on F the contour F(G) is non adherent and disjoint from
each F ∈ F (where F(·) associates with F [ the filter F for each F ∈ F).
Regular extensions will be investigated in a future paper.

Theorem 9.1. If λ > κ > 0 and X is a λ-complete convergence space,
then there exists a κ-complete convergence space Y such that X is a dense
subconvergence of Y .

Proof. Let F be a complete collection of non-adherent filters on X of cardi-
nality λ. Choose a subcollection F0 of F of cardinality κ, and let Y be the
simple extension of X over F\F0. We infer from this definition that the only
convergent filters on F\F0 are the principal ultrafilters (and they converge
to their defining points). The constructed convergence is (1 + κ)-complete,
because the collection F0 ∪ {Y}, where Y is the cofinite filter of F\F0 is
complete. In fact, the elements of this collection are not adherent. On the
other hand, if W is a (free) ultrafilter on Y that does not mesh with any
element of F0 ∪ {Y}, then necessarily X ∈ W, hence either W meshes with
no element of F\F0, and thus is convergent by the completeness of F on X,
or meshes with some F ∈ F\F0, hence converges to F [. If κ is infinite, then
1 + κ = κ; if 0 < κ < ℵ0, then κ-, (1 + κ)- and 1-completeness coincide.

If in Theorem 9.1 κ = 1 and λ is infinite, then we can simplify the proof
above by putting F0 = F. The resulting extension is then 1-complete, hence
locally compactoid (no separation axiom is required in the definition of local
compactoidness). On the other hand, each locally compactoid convergence
can be compactified (no separation axiom is involved) by declaring that the
cocompactoid filter converges to a single added point (like in the Alexandroff
compactification).

10. Duality

As we shall see, a pavement is a dual concept with respect to that of
a cocomplete collection of non-adherent filters. A convergence space X is
κ-paved if for every element x of X there exists a collection of filters V(x)
of cardinality κ such that x ∈ limV for every V ∈ V(x) and if an ultrafilter
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U converges to x, then there exists V ∈ V(x) such that U ≥ V. Notice
that a convergence is a pretopology if and only if its is 1-paved, because a
pavement of X at x ∈ X consists of a single filter V(x) if and only if V(x)
is the coarsest filter that converges to x. The existence of such a filter at
every point characterizes pretopologies among all convergences.

As usual, the evaluation map 〈·, ·〉 : X × ZX → Z is defined by 〈x, f〉 =
f(x). If ξ and σ are convergences, respectively, on X and Z, then C(ξ, σ)
denotes the set of maps from X to Z that are continuous (from ξ to σ). The
σ-dual [ξ, σ] of ξ (also called the continuous convergence) is the coarsest
convergence on for which the evaluation map (restricted to X × C(ξ, σ)) is
jointly continuous. In the case of the Sierpiński topology $ = {∅, {1}, {0, 1}}
on {0, 1}, the set C(ξ, $) can be identified with the set of ξ-closed subsets by
〈x,A〉 = 0 if x ∈ A and 〈x,A〉 = 1 if x /∈ A. Indeed, 〈·, A〉 is continuous from
ξ to $ if and only if A is ξ-closed. It is known that the Sierpiński dual (that
is, $-dual) [ξ, $] is homeomorphic with the upper Kuratowski convergence
(also called hyperconvergence) with respect to ξ.

I shall now resume those few facts from [4] that will be needed in the
sequel. For a filter G on C(ξ, $) the reduced filter is defined by

r(G) ≈ {
⋃

A∈G

A : G ∈ G}.

A reduced filter can be degenerate (in the case of the principal ultrafilter of
the element ∅ of C(ξ, $)). It is straightforward that

A0 ∈ lim[ξ,$] G ⇔ adhξ r(G) ⊂ A0.

A subset G of C(ξ, $) is saturated if clξ B = B ⊂
⋃

A∈G A implies B ∈ G. A
filter on C(ξ, $) is saturated if it admits a base of saturated sets. If H ⊂ X
then eξ H = {B = clξ B : B ⊂ H}. A filter G is saturated if and only there
exists a filter H on X such that G = e\

ξ H.
The restriction Aξ of [[ξ, $], $] to X (considered as a subset of C(C(ξ, $), $))

is coarser than ξ and is called the epitopologization of ξ. Because [Aξ, $] =
[ξ, $] for every convergence ξ, in the study of hyperconvergences one can
assume, without affecting the generality, that the underlying convergences
are epitopologies, that is, equal to their epitopologizations. In what fol-
lows I shall use the fact that every epitopology is star-regular. To explain
what this means, it is handy to introduce two topologies ξ• and ξ∗ associ-
ated with a convergence ξ. The formula clξ• x = clξ{x} defines a relation
{(x,w) ∈ X ×X : w ∈ clξ• x}. As usual, clξ• A =

⋃
x∈A clξ• x is the image

of A ⊂ X by the relation. It turns out that so defined closure is topological;
the corresponding topology ξ• (the point topology of ξ) has a peculiar prop-
erty: every union of closed sets is closed. Therefore, the point-closed sets
are the open sets of another topology, called the star topology (of ξ) that
one denotes by ξ∗. It is clear that clξ∗ is the inverse relation of clξ• . If ξ is
T1 (that is, if all the singletons are closed for ξ) then the star and the point
topologies of ξ become the discrete topology. A filter F on a convergence
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space τ is regular if adh\
τ F = F ; it is called inherent if inh\

τ F = F . Of
course, a filter is star-inherent if and only if it is point-regular, and vice
versa. The map e\

ξ is a bijection between point-regular and saturated filters,
the inverse being r. A convergence is an epitopology if and only if it is a
star-regular pseudotopology with closed limits.

Theorem 10.1. An epitopology is open-hereditarily κ-complete if and only
if its $-dual is κ-paved.

Proof. Let ξ be an epitopology on X and let A be a closed subset of X. If F is
a cocomplete collection of non-adherent filters on X\A, that is, adhξ F ⊂ A
for every F ∈ F, and if an ultrafilter U on X\A is such that limξ U =
adhξ U ⊂ A, then U ≥ F for some F ∈ F. As ξ is star-regular, and because
the star topology and the point topology are complementary,

(10.1) adhξ G = adhξ Vξ∗(G) = adhξ(cl
\
ξ• G)

for every filter G. Therefore {cl\ξ• F : F ∈ F} is a collection of filters (on X)
the adherences of which are included in A and such that if an ultrafilter U
on X\A has the limit included in A, then there is F ∈ F such that

(10.2) U ≥ cl\ξ• U ≥ cl\ξ• F .

I claim that the collection {e\
ξ(cl

\
ξ• F ∧ A) : F ∈ F} is a pavement of [ξ, $]

at A. Indeed, since r is the inverse of e\
ξ restricted to point-regular fil-

ters, r e\
ξ(cl

\
ξ• F) = cl\ξ• F and as adhξ(cl

\
ξ• F) ⊂ A, we infer that A ∈

lim[ξ,$] e
\
ξ(cl

\
ξ• F ∧ A) for every F ∈ F. On the other hand, if W is an

ultrafilter on C(ξ, $) that converges to A in [ξ, $], then adhξ r(W) ⊂ A, and
there is an ultrafilter U on X such that cl\ξ• U = r(W) so that, by (10.1),

limξ U ⊂ A. If A ∈ U , then eξ A ∈ e\
ξ r(W) ≤ W, and thusW ≥ e\

ξ(cl
\
ξ• F∧A)

for every F ∈ F; if A /∈ U , hence by the cocompleteness of {cl\ξ• F : F ∈ F}
in X\A there is F ∈ F such that U ≥ cl\ξ• F , that is, r(W) ≥ cl\ξ• F , thus

W ≥ e\
ξ(cl

\
ξ• F ∧A).

Conversely if A is a closed subset of X, and G is a pavement of [ξ, $] at A,
then {r(G) ∨ Ac : G ∈ G} is a cocomplete collection of non-adherent filters
on X\A. Indeed, every G in G converges to A in [ξ, $], hence adhξ r(G) ⊂ A.
Let U be an ultrafilter on X\A such that limξ U = adhξ U ⊂ A, hence by
star-regularity, adhξ cl\ξ• U ⊂ A. There exists a maximal point-regular filter
H such that

cl\ξ• U ≤ H ≤ U ,

because the set of point-regular filters H fulfilling the condition above is
non empty, and the supremum of every chain of such filters is point-regular.
Clearly, adhξ H ⊂ A, hence A ∈ lim[ξ,$] e

\
ξ(H) because r e\

ξ(H) = H; more-

over, e\
ξ(H) is maximal within the saturated filters. If W is an ultrafilter
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finer than e\
ξ(H), then A ∈ lim[ξ,$]W and because G is a pavement at A,

there is G ∈ G such that W ≥ G. Then e\
ξ(H) = e\

ξ r(W) ≥ e\
ξ r(G) and thus

H = r e\
ξ(H) ≥ r e\

ξ r(G) = r(G).

Hofmann and Lawson proved in [7] that the upper Kuratowski conver-
gence of a topology is topological if and only if the underlying topology is
core-compact. Mynard and the present author extended in [3],[4, Theorem
16.4] this characterization to general convergence spaces (if the underlying
convergence is topological, and the upper Kuratowski convergence is pre-
topological, then it is topological). A convergence is called topologically
core-compact if for every open set O and for every filter F that converges
to an element of O, there exists F ∈ F which is compactoid in O, that is,
such that every ultrafilter on F converges to an element of O. It is clear
that a convergence is topologically core-compact if and only if it is open-
hereditarily 1-complete. Hence, we recover

Corollary 10.2. [4, Theorem 16.4] An epitopology is topologically core-
compact if and only if its Sierpiński dual is a pretopology.

The result above is restricted to epitopologies in order to simplify the for-
mulation; in full generality, the first condition concerns the epitopologization
of an arbitrary convergence.
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