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Abstract. At the end of 19th century Peano discerned many mathe-
matical concepts in a perfect form that remained such till today. The
formal language of logic that he developed, enabled him to perceive
mathematics with great precision and depth. Actually he built mathe-
matics axiomatically based exclusively on logical and set-theoretic prim-
itive terms and properties, which was a revolutionary turning point in
the development of mathematics.

Ask a mathematician about Peano’s achievements and you would prob-
ably hear about Peano’s continuous curve that maps the unit interval onto
a square and about Peano’s axioms of natural numbers. One might have
heard of Peano series and Peano remainder.

Fig. 1. Giuseppe Peano (1858-1932)

It is unlikely that he/she would mention “Zermelo” axiom of choice, “Borel-
Lebesgue” theorem, “Fréchet” derivative, “Bouligand” tangent cone, “Grön-
wall” inequality, “Banach” operator norm, “Kuratowski” upper and lower
limits of sequences of sets, “Choquet” filter grill or “Mamikon” sweeping-
tangent theorem, in spite of the fact that Peano anticipated these notions or
proved these theorems well before, and often in a more accomplished and
general form than those who granted them their names.
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It is plausible that you won’t be told that he was at the origin of many
mathematical symbols (like ∈,∪,∩,⊂,∃, N, R, Q), of reduction of all math-
ematical objects and properties to sets, of axiomatic approach to Euclidean
space (with vectors and scalar product), of the theory of linear systems of
differential equations (with matrix exponential and resolvents), of modern
necessary optimality conditions, of derivation of measures, of definition of
surface area and of many others.

On the faculty at the University of Turin since 1880, Peano reached the
summit of fame at the turn of the century, when he took part in the Interna-
tional Congress of Philosophy and the International Congress of Mathemati-
cians in Paris in 1900. Bertrand Russell, who participated in this congress,
reported that Peano was always more precise than anyone else in discus-
sions and that he invariably got the better of any argument upon which he
embarked.

We should have in mind that at the time when Peano appeared on the
mathematical scene, mathematical discourse was in general vague and ap-
proximative (1). Although Cauchy was praised for having given solid bases
to mathematics, he was not exempt from errors that would be today quali-
fied as elementary. Nor had new rigor of Weierstraß stopped vagueness and
imprecision.

Peano’s rigorous refoundation of mathematics was not in the main streams
of mathematical activity and the simplicity and ease, with which Peano
grasped the essence of things, contrasted with commonly involved and te-
dious pace. His achievements were often unnoticed, because they were quite
in advance for his epoch. In a letter to Camille Jordan of 6th November
1894, Peano writes

[...] I have been teaching at the university for fourteen years
and I am not yet appointed full professor, contrary to others
who are younger by age and by seniority; because here my
work is little known and not much appreciated (2).

We shall try to recall what is more or less forgotten about the importance
of this great scientist. In doing so, we will exploit many facts gathered in
the papers commemorating the 150th anniversary of the birth of Peano by
Dolecki, Greco [7], [8], Greco, Pagani [16], Greco, Mazzucchi, Pagani [14],
[15] and Bigolin, Greco [1].

1For example, historians of mathematics agree that the first rigorous proof that a
function is constant provided that its derivative is null, was given by H. A. Schwarz in
1870. Much later, in 1946, J. H. Pearce, a reviewer of a textbook “The Theory of Functions
of Real Variables” by L. M. Graves, stresses that the Rolle’s Theorem has a correct proof,
“a comparative rarity in books of this kind”.

2Translation of an excerpt of a letter written in French: [...] il y a quatorze ans que
je professe à l’Université, et je ne suis pas encore nommé ordinaire, à différence d’autres
plus jeunes d’âge et d’enseignement ; car mes travaux sont ici peu connus et peu estimés.
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1. Youthful achievements

Peano graduated in 1880 and became an assistant of Genocchi in 1881/82,
starting soon to write down a calculus course that his master taught at that
time. Peano was charged with exercises to that course, but he soon took it
over entirely and continued till 1884, because Genocchi fell ill.

Peano utilized notes made by students at Genocchi’s lessons and com-
pared them point by point with all the principal calculus texts. Conse-
quently he made many additions and some changes in these lessons, so that
when Genocchi saw the result, that is, Calcolo differenziale e integrale [11,
(1884)], he disclaimed his authorship, stating that “everything [in the book]
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was due to that outstanding young man Dr. Giuseppe Peano”. In a cel-
ebrated Encyclopädie der Mathematischen Wissenschaften [53, (1899)],[60,
(1899)] Calcolo differenziale e integrale and another Peano’s book Lezioni di
analisi infinitesimale [44, (1893)] are cited among most influential treaties
of infinitesimal calculus together those of Euler (1748) and Cauchy (1821).

Making the mentioned comparisons with the existing literature, Peano
realized that numerous mathematical definitions were flawed, many proofs
were defective and multiple theorems had overabundant hypotheses. Critical
analysis of those defects urged him to rectify them.

Most of major achievements of Peano were realized or prefigured before he
turned thirty. They are collected in the already mentioned Calcolo differen-
ziale e integrale, in Applicazioni geometriche [35, (1887)] and in Calcolo
geometrico [36, (1888)]. Hence among youthful accomplishments we will
mention those carried out a couple of years from graduation.

1.1. Surface area. In 1882 Peano at the age of 24 discovers that the defini-
tion of surface area, presented by Serret in his Cours d’ Analyse [56, (1868)],
is incorrect. According to Serret, the area of a surface should be given by the
limit of the areas of inscribed polyhedral surfaces. Peano observes that in
the case of cylindrical surface, it is possible to choose a sequence of inscribed
polyhedral surfaces fulfilling Serret’s condition, so that the sum of the areas
converges to infinity. Here is the construction that was discovered indepen-
dently by Schwarz and Peano. A Venetian lantern of height H (divided into
n equal intervals) and of radius R (circles corresponding to the ends of the
intervals are divide into m equal segments). The lantern is hence composed
of 2mn triangles.

Fig. 2. A Venetian lantern taken from a course of C. Hermite
[20, (1883) p. 36].

Divide the cylinder vertically into intervals of equal length H
n , on each

of n + 1 circles corresponding to the ends of these intervals take m equally
distributed points, so that the points of each circle are midway of those
of the circle above. Consider the triangles, the vertices of which are two
consecutive points on one circle and midway point on the circle above or on
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the circle below. Then the area of the lantern is (3)

(1) V (n,m) := 2mnR sin
π

m

√
4R2 sin4 π

2m
+
H2

n2
.

The limit depends on the proportion of n and m, for example, if n =
m, then limm→∞ V (m,m) = 2πRH, but if, for instance, n = m3, then
limm→∞ V (m3,m) =∞.

Moreover, Peano identifies a principal error of the Serret’s method, that is,
that a variable plane passing through three non-collinear points of a surface
S, does not necessarily tend to the tangent plane of S at a point x, when
these three points tend to x.

Genocchi moderates enthusiasm of the young mathematician, telling him
that a similar counterexample has already been discovered by H. A. Schwarz
two years earlier. But when Genocchi invites Schwarz to propose an alter-
native correct definition, Schwarz declines and stresses several difficulties.

In Applicazioni geometriche [35, (1887)] Peano overcomes all the difficul-
ties of defining that area and gives the following algorithm: fix a plane L
and for an arbitrary finite partition of the surface S, move arbitrarily but
rigidly each element of the partition and project it orthogonally on L. Then
take the sum of so obtained plane areas. This sum depends on the partition
and on the positions of its elements after the transport. The supremum of
so obtained sums over all the partitions and all the positions defines the area
of S.

This definition does not lead to contradictions as that of Serret. In fact
it coincides with the Lagrange formula for the area in case of Cartesian
surfaces, that is, given by C1-functions f,

(2)
∫∫

D

√
1 + ‖∇f(x, y)‖2 dx dy.

1.2. Concept of plane measure. In [31, (1883)] Peano is the first to
prove that a positive function f of one variable is integrable if and only if
the positive hypograph of f is measurable. If this is the case, Peano shows
that the integral of f is equal to the area of the positive hypograph of f .

In the same paper, he presents concepts of external and internal area
and, what is most considerable, that of measurability (4) for planar sets, ten
years before the work of Jordan [25, (1893)]. In introducing the inner and

3The area of the lateral surface of the cylinder of height H and radius R, is 2πRH.
The length of the bases of these isosceles triangles is

2R sin
π

m

and the altitude is r
R2(1− cos

π

m
)2 +

H2

n2
.

As 1 − cos π
m

= 2 sin2 π
2m
, the area of the polygon formed by these triangles is equal to

(1).
4Peano does not use the term measurability.
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outer area of planar sets as well as in defining surface area, Peano is also
influenced by Archimedes’s approach on calculus of area, length and volume
of convex figures.

Till then the concept of measure was commonly used, but was not defined.
Only later appears a concept of Inhalt (content) in the works by Stolz [57,
(1884)], Cantor [3, (1884)], Harnack [18, (1885)], corresponding to external
measure.

Peano considers finite unions of polygons that cover a given planar set
A and finite unions of polygons that are included in A. Denote by P the
collection of finite families of polygons. The infimum over P ∈ P of

(3)
∑

P∈P
area(P )

such that
⋃
P∈P P ⊃ A, defines the external area of A, and the supremum

over P ∈ P of (3) such that
⋃
P∈P P ⊂ A, defines the internal area of A. If

these two values coincide, A is said to be measurable, and the common value
is called the area of A.

Mind that the polygons of a given family P ∈ P considered in these
definition can overlap! This is a deliberate choice of Peano, which enables
one to immediately infer that the measure of isometrically invariant. The
corresponding construction of Jordan, using grills of rectangles, requires a
proof of such invariance.

1.3. Dirichlet function. Dirichlet was probably the first to conceive func-
tions as arbitrary assignments which need not to be expressed analytically,
that is, by algebraic operations, elementary functions and their limits. To
show the extent of his new concept, he gave in 1829, as an example, the cel-
ebrated Dirichlet function, which is the characteristic function of irrational
numbers χR\Q (5).

In [11, (1884)] Peano shows that, surprisingly, the Dirichlet function is
analytically expressible as double limit of rational functions

χR\Q (x) = limm→∞ ϕ (sin (m!πx)) ,

where

ϕ(x) := limt→0
x2

x2 + t2
=

{
1 if x 6= 0
0 if x = 0

Indeed, if x is rational, then sin (m!πx) = 0, hence ϕ (sin (m!πx)) = 0 for
m greater than the denominator of the fraction of integers that represents
x; if x is irrational, then m!x is irrational and thus sin(m!πx) 6= 0 so that
ϕ (sin (m!πx)) = 1 for each m.

Peano adopts Dirichlet’s definition of function in [11, (1884)]; in [48,
(1908)] he defines functions and, more generally, realtions as subsets of
Cartesian product. In [49, (1911)], commenting freshly published Prin-
cipia Mathematica, where relations are primary notions, Peano reiterates

5that assigns 0 to the rational numbers and 1 to the irrational numbers.
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his preference to consider set as a primitive notion and defines functions as
particular relations, as it is commonly done today.

1.4. Dispute about the mean value theorem. In nineteenth century
Nouvelles Annales de Mathématiques published letters and short notes, of-
fering a forum to mathematical community. In [32, (1884)] Peano observes
that the proof of the mean value theorem given by Jordan in his Cours
d’Analyse [23, (1882)] is faulty. Mind that, at that time, Peano was a young
assistant, while Jordan was a famous professor almost twice as old as Peano.

Theorem 1 (mean value theorem). If a real function f is continuous in
[a, b] and differentiable in (a, b) , then there is c ∈ (a, b) such that

f (b)− f (a) = f ′ (c) (b− a) .

It is impressive that an easy basic fact, which is nowadays taught in
freshmen calculus courses, constituted a difficulty for a great mathematician
like Jordan.

In his proof, Jordan divides the interval to subintervals a = a0 < a1 <
. . . < an−1 = b, of diameter tending to 0, and claims that

(4)
f (ar)− f (ar−1)

ar − ar−1
− f ′ (ar−1)

tend also to 0. Peano’s example f(x) := x2 sin
1
x

for x 6= 0 and f [x] := 0 for
x = 0,

Fig. 3. f(x) := x2 sin
1
x

if x 6= 0.

with appropriately chosen ar and ar−1 tending to 0, shows that (4) does not
hold in general.

Peano indicates that Jordan’s claim is true under the continuous differ-
entiability of f and adds that the mean value theorem can be easily proved
without that assumption.

Jordan replies that Peano’s objections are founded, and that, [Jordan]
implicitly assumed that

(5)
f (x+ h)− f (x)

h
→h f

′ (x) uniformly as h tends to 0
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in the interval [a, b] , and asks Peano to furnish a proof of his claim of futility
of continuity of derivative, as he does not know a satisfactory one (6). In
[33, (1884)] Peano remarked that a correct proof of Theorem 1 was due to
Bonnet and that property (5) amounts to the cotinuous differentiability of
f .

This dispute originates Peano’s study of strict derivatives of functions
and measures (Sections 7 and 11).

1.5. Some of Peano’s counter-examples. Peano encounters numerous
inaccuracies and errors in mathematical literature and provides, with as-
tonishing ease, a long list of counter-examples. He remains perhaps the
champion of counter-examples in the mathematical world. Of course, it is
natural that errors happen to (almost) everyone and papers of numerous
great mathematicians contain, sometimes fecund, errors. Peano rigor was
however quite exceptional; Bertrand Russell comments in The Principles of
Mathematics that Peano had a rare immunity from error. We list below
some of Peano’s counter-examples from Calcolo differenziale e integrale of
1884, to sundry statements of Cauchy, Lagrange, Serret, Bertrand, Tod-
hunter, Sturm, Hermite, Schlömilch and others.

A. The order of partial derivation cannot be altered in general : if

f(x, y) :=

 xy
x2 − y2

x2 + y2
, if x2 + y2 > 0,

0, if x = y = 0,

then fxy(0, 0) = −1 and fyx(0, 0) = 1 (7).
B. Existence of partial derivatives is not sufficient for the mean value

theorem in two (and more) variables: Peano shows that for

f(x, y) :=


xy√
x2 + y2

, if x2 + y2 > 0,

0, if x = y = 0,

6At this point, Ph. Gilbert of Louvain intervenes in the exchange, saying that the
request of professor Jordan was done with archness, because the mean value theorem
without the continuity of derivative is false. The example he proposes to support his
claim is (of course!) wrong.

In his answer [33, (1884)], Peano gives the (today standard) proof of Bonnet, using the
theorems of Weierstraß and Rolle, and mentions that satisfactory proofs can be found in
the books of Serret, Dini, Harnack and Pasch.

7Peano mentions other, more complicated counter-examples, for instance, that of Dini
and of Schwarz (1873) (quoted below):

f(x, y) :=


x2 arctan y

x
− y2 arctan x

y
, if xy 6= 0,

0, if xy = 0.
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the mean value formula does not hold (8).

C. On the formula of de l’Hôpital: f (0) = 0 = g (0) and limx→0
f (x)
g (x)

exists without the existence of limx→0
f ′ (x)
g′ (x)

. Peano proposes a counter-

example, using f as defined in Figure 3 and g(x) := x. Here the derivatives
exist, but f ′ is discontinuous at 0. In another example:

f (x) := x2

∫ x

0
sin

1
t4
dt

t
and g(x) := x2,

f ′ is everywhere continuous, but limx→0
f ′ (x)
g′ (x)

does not exist.

D. A function can attain, on each straight line passing through (0, 0) , a
local minimum at (0, 0) , without attaining its local minimum at (0, 0) (9).
Consider

f (x, y) := (y − x2)(y − 2x2).

Fig. 4. Zero sub-level of f .

The value f(x) is positive if y ≥ 2x2 and if y ≤ x2; it is negative if x2 ≤ y ≤
2x2. Therefore (0, 0) is neither local minimum nor local maximum. Each
straight line L passing through (0, 0) remains in the positivity area of f on
an open interval around (0, 0) , that is, f attains a local on L.

8Indeed, both partial derivatives are null at (0, 0), otherwise

fx(x, y) =
y3

(x2 + y2)3/2
and fy(x, y) =

x3

(x2 + y2)3/2
.

For every real number t,

f(t, t) =
|t|√

2
, fx(t, t) = fy(t, t) =

(sgn(t))3

2
√

2
∈ {− 1

2
√

2
, 0,

1

2
√

2
}

For x0 := y0 := −1 and h := k := 3 and θ ∈ R,

f(x0 + h, y0 + k)− f(x0, y0) =
|x0 + h| − |x0|√

2
=

1√
2

and hence the mean value formula does not hold.
9Peano constructs this counter-example of a related statement of Serret: if df (x, y) = 0,

and d4f (x, y) (h, k) > 0 for each (h, k) such that d2f (x, y) (h, k) = d3f (x, y) (h, k) = 0,
then (x, y) is a local minimum.
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2. Logic and set theory

The formal language of logic that Peano developed, enabled him to per-
ceive mathematics with great precision and depth. Actually he built mathe-
matics axiomatically based exclusively on logical and set-theoretic primitive
terms and properties, which was a revolutionary turning point in the devel-
opment of mathematics. For Peano, logic is the common part of all theories.

It should be emphasized that the formal language conceived and used by
Peano was not a kind of shorthand adapted for a mathematical discourse,
but a collection of ideographic symbols and syntactic rules with unambigous
set-semantics, which produced precise mathematical propositions, as well as
inferential rules that ensure the correctness of arguments.

For Peano, semantics is inherent to syntax, a mathematical point of view
as opposed to that of logicians.

Fig. 5. Formal statement and proof of Leibniz theorem from
Peano’s Formulario Mathematico [48, (1908) p. 431] (in latino
sine flexione and Peano’s symbolic language).

In the figure above the following Leibniz theorem from 1694 is stated and
proved: If g, h are functions from R to R, then a function f from R to R
verifies the equality f ′ = g f + h if and only if

f(x) = e
R x
0 g

(
f(0) +

∫ x

0
e−

R u
0 gh(u)du

)
for every x ∈ R.

2.1. Reduction of mathematics to sets. Till nineteenth century, there
was a great variety of mathematical objects: numbers, lines, surfaces, fig-
ures, all considered as entities. The language of mathematics was constituted
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of a mixture of symbols and of common language. Because of semantic am-
biguity of natural languages, mathematical facts expressed with their aid
may not be univocal.

With Dedekind and Cantor sets become mathematical objects, while
Peano reduces all the objects and properties to sets. Relations become
subsets of Cartesian products, functions are particular relations and opera-
tions are expressed by means of functions. All this constitutes a conceptual
revolution.

It follows that two objects x and y are equal if and only if x ∈ X is
equivalent to y ∈ X for every set X. In this way, Peano implements the
principle of Aristotle (10), Saint Thomas (11) and Leibniz (12); see [50, (1915)]
and [50, (1916)].

Peano understands urgent necessity of inequivocal formal language to
refound mathematics on solid bases. Starting from 1889, he formalizes a
significative part of mathematics of his times.

Mathematical objects are accessible through symbols. Peano introduces
symbols he needs for his formalism of mathematics. Among them

∈,∪,∩,⊂,∃,

that today have become universal. He denotes the sets of natural numbers
with N, of rational numbers with R (for rational) of real numbers with q (for
quantity), of numerical finite-dimensional Euclidean space with qn and so
on. He forms all mathematical expressions using two primitive propositions
x ∈ y and x = y. Therefore he keeps the distinction between ∈ and ⊂, hence
between an element x and the corresponding singleton {x}. A relevant
subject of research activity of Peano and his School concerned definitions in
Mathematics, a subject that received and till now receives more attention
by philosophers than by mathematicians.

Peano uses formal expressions to announce mathematical facts and formal
inferential transformations to prove them. Peano’s symbolic propositions
are not stenographic, but organic, with precise univocal semantic values.
Thanks to this absolute precision of his formalism, Peano could easily detect
errors and see necessity of hypotheses or axioms. For Peano, mathematical
facts are precisely those that can be expressed in terms of set-theoretic
and logical symbols; therefore in [47, (1906)] Peano rejects the paradox of
Richard [55, (1905)], as pertaining to linguistics and not to mathematics.

2.2. Axiom of choice. Peano realized that the principle of infinite arbi-
trary choices was not guaranteed by the axioms traditionally used in math-
ematics, when he elaborated a proof of existence of solutions to systems
of ordinary differential equations under the sole hypothesis of continuity

10Nam quaecumque de uno praedicatur, ea etiam de altero praedicari debent.
11Quaecumque sunt idem, ita se habent, quod quidquid praedicatur de uno, praedicatur

et de alio.
12Eadem sunt quorum unum in alterius locum substitui potest, salva veritate.
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[39, (1890)], which we will discuss later. Only the principle of determined
choices was allowed. For his specific problem of selecting elements from
closed bounded subsets of Euclidean space, he based his choice on the lexi-
cographic order of Euclidean space.

After the rediscovery of the axiom of choice by Zermelo in [61, (1904)],
the pertinence of this axiom was discussed by mathematical community,
among whom Russell and Poincaré had their say, but Peano’s contribution
was forgotten. A promise of 1924 of Zariski to reestablish Peano’s priority
was not kept [8, p. 321].

3. Arithmetic

Peano proposes six axioms to define natural numbers. We resume them as
follows: the primitive notions N0, 0 and an operation σ fulfill the following
axioms:

P0. N0 is a set,
P1. 0 ∈ N0,
P2. σ(n) ∈ N0 for every n ∈ N0,
P3. if S is a set, 0 ∈ S and σ(S) ⊂ S, then N0 ⊂ S,
P4. σ is injective,
P5. σ (n) 6= 0 for every n ∈ N0.

[. . . ]

Fig. 6. Here are Peano’s six axioms of arithmetic as they
appear in Formulario Matematico [48, (1908) p. 27] (Peano’s
comments are in latino sine flexione).

It follows from the axioms of Peano that N0 is infinite in the sense of Peirce
and Dedekind, that is, there exists a map σ : N0 → N0 that is injective but
not surjective and that N0 is a minimal infinite set, because of the induction
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principle P3. In the introduction to Arithmetices principia, nova methodo
exposita [38, (1889)] Peano writes (13)

Questions pertaining to the foundations of mathematics, al-
though treated by many these days, still lack a satisfactory
solution. The difficulty arises principally from the ambiguity
of ordinary language. For this reason it is of the greatest
concern to consider attentively the words we use. [...]

I have indicated by signs all the ideas which occur in
the fundamentals of arithmetic, so that every proposition is
stated with just these signs. The signs pertain either to logic
or to arithmetic.

Following Lehrbuch der Arithmetic of Grassmann [12, (1861)], Peano ex-
tends by induction the operation σ to those of addition and multiplication.
He is then in a position to extend arithmetic to integers, rationals and reals.

Some claim that Peano is beholden to Dedekind for his foundation of
arithmetic. This is however not the case, because Peano proceeds axiomat-
ically, proving, by the way, the independence of his axioms, while Dedekind
proves everything, even improvable, like the existence of infinite set. Peano
uses a completely formal and coherent language, while Dedekind is often
vague (he does not distinguish membership from inclusion).

4. Peano’s filling curve

In 1914 Hausdorff wrote in Grundzüge der Mengenlehre [19] of Peano’s
filling curve that this is one of the most remarkable facts of set theory, the
discovery of which we owe to G. Peano (14). Nowadays this fact is rather
qualified as topological. We present it in a separate section preceding that
of other topological achievements of Peano.

Invited by Felix Klein to publish in Mathematische Annalen, Peano sent
a paper [40, (1890)], in which he proves the existence of a continuous map
from the interval [0, 1] onto the square [0, 1]× [0, 1] .

Fig. 7. The figure representing the second approximations of
Peano’s curve as it appears in Formulario Matematico [48,
(1908) p. 240].

In order to construct such a map, he uses the ternary representation of
each element t of [0, 1] and transforms it into ternary representations of

13Translation from Latin is taken from [27].
14Das ist eine der merkwürdigsten Tatsachen der Mengenlehere, deren Entdeckung wir

G. Peano verdanken.
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x (t) ∈ [0, 1] and y (t) ∈ [0, 1] , that is, of an element of [0, 1]× [0, 1]. Because
the sought map need to be continuous, Peano’s construction is necessarily
more sophisticated than that of Cantor that established a bijection between
[0, 1] and [0, 1]× [0, 1] .

More precisely, Peano uses ternary representations of the elements t =
0, a1a2 . . . of [0, 1] to define ternary representations of

x(t) = 0, b1b2 . . . and y(t) = 0, c1c2 . . . ,

in such a way that successive subdivisions of [0, 1] into 32, 92, 272, . . . seg-
ments are mapped onto 32, 92, 272, . . . squares that subdivide [0, 1]× [0, 1] so
that if two segments are adjacent then the corresponding squares are also
adjacent. This rule implies the continuity of the constructed curve.

Let us make this explicit for the first subdivision of [0, 1]: the first two
fractionary digits of t = 0, a1a2, . . . correspond to the left end of an interval
of this subdivision:

0, 00 0, 01 0, 02 0, 10 0, 11 0, 12 0, 20 0, 21 0, 22
0 1 2 3 4 5 6 7 8 .

Accordingly the n-th interval is mapped onto the n-th square, as in the
following table.

0, 2 2 3 8
0, 1 1 4 7
0, 0 0 5 6

0, 0 0, 1 0, 2

Peano defines an involution k : {0, 1, 2} → {0, 1, 2} by

k (0) = 2, k (1) = 1, k (2) = 0.

Consequently, kn (a) = a if n is even and kn (a) = k (a) if n is odd. Observe
that the first subdivision above corresponds to

b1 = a1 and c1 = ka1 (a2) .

In full generality, the map is defined by

bn = ka2+a4+···+a2n−2 (a2n−1) and cn = ka1+a3+···+a2n−1 (a2n) .

The vertices of the three polygonal lines inscribed in the Peano’s curve in
the figure below, are calculated at 0, 1 and, respectively, at

0, a1a21,(first polygonal)

0, a1a2a3a41,(second polygonal)

0, a1a2a3a4a5a61.(third polygonal)
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for a1, a2, a3, a4, a5, a6 ∈ {0, 1, 2} , where 1 stands for the periodic 1.

Fig. 8. The first three approximations of Peano’s curve cor-
responding to first digits of the ternary representations.

Peano concedes himself that he conceived the filling curve as a counterex-
ample to commonly diffused ideas of curve, for instance, that the area of a
curve is null (15). He observes that his curve is (and even its components
are) nowhere differentiable. This fact is obvious, because the image of each
segment of the n-th subdivision of [0, 1] by Peano’s curve is equal to the
corresponding square of the n-th subdivision of [0, 1]× [0, 1].

Peano’s original construction was not illustrated by any figure. Solicited
by Klein, David Hilbert published a note [21, (1891)] on Peano’s curve (see
the figure below), presenting a variant based on binary representations. He
described a Cauchy sequence (for the uniform convergence) of curves, hence
convergent to a continuous map, the image of which is dense by construction.
On the other hand, it is also closed (hence surjective), as the image of a
compact set by continuous map.

Fig.9. The figure representing the first three approximations
of Hilbert’s, as it appears in [21, (1891)]].

15Peano had occasional epistolary exchange with Jordan: two letters from Peano to
Jordan (from 1884 and 1894) are known, while no letter from Jordan to Peano has been
found. In spite of their familiarity, in 1894 in L’intermédiare des mathématiciens [26]
Jordan asks if there exists a curve of undetermined area. Peano replies in [45, (1896)] that
if one joins the ends of his curve with those of a rectifiable curve lying outside the square,
then the difference between the outer and inner measures of the set inside the curve is
equal to the area of the square.
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5. Topology

5.1. Interior and closure. The notions of interior, exterior and bound-
ary points of subsets of Euclidean space existed informally in mathematical
literature before 1887, but were precisely defined for the first time in Appli-
cazioni Geometriche [35, (1887)], where x is said to be an interior point of
a subset A of Euclidean space X there is r > 0 such that B(x, r) ⊂ A; an x
is called an exterior point of A if it is an interior point of X \A

An x is a boundary point (16) if it is neither exterior nor interior. Subse-
quently, Peano defines the interior intA of A as the set of interior points,
and the closure of A by

clA := {x ∈ X : dist(x,A) = 0} ,

and relates it to the notion of closed set of Cantor, that is, clA is the least
closed set that includes A.

These fundamental topological concepts reappeared several years later in
the second edition of Cours d’Analyse [25, (1893)] of Jordan.

It is significant that Peano introduced interior and exterior points in con-
nection with internal and external measures (see Section 11).

5.2. Distributive and antidistributive families. Miscellaneous distribu-
tive properties were studied in Applicazioni geometriche [35, (1887)]. A dis-
tributive family H of subsets of X (H ∈ D, for short) is defined as a family
fulfilling

(6) H0 ∪H1 ∈ H ⇐⇒ H0 ∈ H or H1 ∈ H.

Among examples of distributive families given by Peano are the family of
infinite sets and that of unbounded subsets of Euclidean space. He calls a
family A (of subsets of X) antidistributive (A ∈ I, for short) if

(7) A0 ∪A1 ∈ A ⇐⇒ A0 ∈ A and A1 ∈ A.

By the way, such families are nowadays called ideals. For instance, the
family of finite sets and that of bounded subsets of Euclidean space are
antidistributive.

We call a family F of subsets of a set X is called a filter (F ∈ F, for
short) (see H. Cartan [4, (1937)]) if

(8) F0 ∈ F and F1 ∈ F ⇐⇒ F0 ∩ F1 ∈ F .

We include here neither the usual non-degeneracy condition: ∅ /∈ F (the
only filter F on X fulfilling ∅ ∈ F is the power set 2X of X) nor the
nonemptiness: F 6= ∅.

16In Peano terminology, limit point.
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In order to relate the properties (6),(7) and (8), we consider three unitary
operations 2X → 2X , namely, for A ∈ 2X ,

A# := {H ⊂ X : ∀
A∈A

H ∩A 6= ∅},(grill)

Ac := {H ⊂ X : H /∈ A} ,(complementation)

A[ := {X \A : A ∈ A} .(complementary)

These operations are involutions and

# (F) = D, c (D) = I and [ (I) = F.
The grill was introduced by Choquet [6, (1947)], who notices that H is
the grill of a filter if and only if (6) holds. Therefore Choquet rediscovers
distributive property sixty years after they were introduced by Peano.

5.3. Compactness. It is stupefying that in the eighties of the nineteenth
century Peano routinely used as a matter of fact two dual properties of
abstract compactness. Peano attributes one of them to Cantor [3, (1884)].
The definition of “compactness” by Heine (1872) came earlier, while those of
Borel (1895), Lebesgue (1902) Vietoris (1921) and Alexandrov and Urysohn
(1923) were posterior to Cantor and Peano.

Theorem 2. Let S be a bounded non-empty set of Euclidean space X. If
H is a distributive family of subsets of X and S ∈ H, then there exists a
point x̄ ∈ clS, such that any neighborhood of x̄ belongs to H.

Peano cites Cantor [3, (1884) p. 454] for Theorem 2 and its proof (17) and
restates it in terms of antidistributive families:

Theorem 3. Let S be a bounded non-empty set of Euclidean space X. If
A is an antidistributive family of subsets of X and for each x ∈ clS there
is a neighborhood of x belonging to A, then S ∈ A.

A restatement in terms of filters yields readily

Theorem 4. Let S be a bounded non-empty set of Euclidean space X. If
F is a filter X and S ∈ F#, then there exists a point x̄ ∈ clS, such that
x̄ ∈ adhF .

Recall that N (x) denotes the neighborhood filter of x and the adherence
of F can be defined by

adhF :=
{
x ∈ X : F ⊂ N (x)#

}
.

A subset S of a topological space X is said to be relatively compact if for
each family R of open sets is a cover such that

⋃
R∈RR = X, there is a

finite subfamily R0 of R such that S ⊂
⋃
R∈R0

R. A contraposition of the
definition produces the well known fact that S is relatively compact if and
only if S ∩ adhF for each filter F such that S ∈ F#.

17In his proof, Peano, as Cantor, considers successive partitions of S of diameter tending
to 0 He mentions that this method was used by Cauchy.
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As an immediate consequence of any of three equivalent theorems above,
we get

Theorem 5 (Borel-Lebesgue). Each bounded subset of Euclidean space is
relatively compact.

Consequently, the Borel-Lebesgue theorem was known to Peano in two
dual versions (Theorems 2 and 3).

Peano quotes as an immediate corollary of Theorem 2, the Weierstraß
theorem saying that

Corollary 6. A continuous real-valued function on a closed bounded set
attains its minimum and maximum.

It is enough to consider, in the case of maximum, the family H of subsets
of S such that H ∈ H whenever sup f (H) = sup f (S) and to notice that
H is distributive. Although the framework remains that of Euclidean space,
the method is valid for a continuous function on a compact subset of a
topological space.

Applying the corollary above in metric space, the distance from X \ O
(which is continuous) attains its minimum on a compact set F, hence Peano
gets

Corollary 7. If F is a compact set and O is an open set such that F ⊂ O,
then there exists r > 0 such that B (F, r) ⊂ O.

5.4. Lower and upper limits of variable set. Generalizing the notions of
limit of straight lines, planes, circles and spheres (that depend on parameter)
considered as sets, he defines two limits of variable figures (in particular,
curves and surfaces).

A variable figure (or set) is a family, indexed by the reals, of subsets Aλ
of an affine Euclidean space X. Peano defines in Applicazioni Geometriche
[35, (1887)] the lower limit of a variable figure by

Liλ→+∞Aλ := {y ∈ X : limλ→+∞ d(y,Aλ) = 0}.

In the last two editions of Formulario Mathematico [46, (1903)], [48,
(1908)] he defines also the upper limit of a variable figure:

Lsλ→+∞Aλ := {y ∈ X : lim infλ→+∞ d(y,Aλ) = 0},

that he also expresses as

Lsλ→∞Aλ =
⋂

n∈N
cl
⋃

λ≥n
Aλ.

These notions will serve Peano in the definitions of lower and upper tan-
gent cones (see Section 8) and, as Peano himself stresses, in the theory of
differential equations (see Section 10).
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6. Vector spaces

6.1. Affine and vector spaces. Peano maintains firmly the distinction
between points and vectors and so on. He applies the geometric calculus of
Grassmann and refounds axiomatically affine spaces and Euclidean geome-
try, based on the primitive notions of point, vector (i.e., difference of points)
and scalar product.

In Calcolo geometrico [36, (1888)] he provides a modern definition of
vector space structured by addition and multiplication by scalars, which
fulfill

a+ b = b+ a,(comutativity)

a+ (b+ c) = (a+ b) + c, m(na) = (mn)a,(associativity)

m(a+ b) = ma+mb, (m+ n)a = ma+ na,(distributivity)

1a = a, 0a = 0,(normalization)

for every vectors a, b, c, and scalars m,n. That concept was implicit in the
work of Grassmann [13, (1862)] and based on the notions of sum, difference
and multiplication by scalars.

6.2. Norms. In [37, (1888)] Peano defines the Euclidean norm in numerical
Euclidean space Rn for arbirary natural n, realizing an abstraction from
orthogonal coordinates. He recognizes its equivalence with the l∞-norm.

Subsequently he defines the norm of linear maps F between Euclidean
spaces by

‖F‖ := max
x 6=0

‖Fx‖
‖x‖

,

which constitutes the first occurrence of the Banach operator norm. Fur-
thermore he shows its basic properties and its compatibility with the linear
operator algebra, for example,

‖GF‖ ≤ ‖G‖ ‖F‖ .

He confronts it with the Euclidean norm in the corresponding space of ma-
trices and relates it to the eigenvalues of F TF, where F T is the transposed
operator of F. He also gives the Liouville formula:

det(eA) = etrA.

7. Differentiability

The definition of derivative at a point x of a real-valued function defined
on a subset of Euclidean space appears already in Applicazioni geometriche
[35, (1987)] and is generalized in Formulario Mathematico [48, (1908)] to
function valued in Euclidean space: a function f : A → Rn, where A is a
subset of Rm and x is an accumulation point of A, is said to be differentiable
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at x if there exists a linear map L : Rm → Rn such that

(9) limA3y→x
f(y)− f(x)− L(y − x)

‖y − x‖
= 0.

Before Peano, differentiability of functions of several variables was under-
stood as the existence of total differential and in practice was assured by
the continuity of partial derivatives, that is, by strict differentiability (see
below). It was Thomae who pointed out in [59, (1875)] that differentiability
was not equivalent to partial differentiability. Peano’s definition frees the
derivative of particular coordinate system, thus makes it possible to pass
from one coordinate system to another.

It should be stressed that Peano’s definition appeared in a rigorous mod-
ern form (9), that is used nowadays in contrast to the standard language
of mathematical definition in that epoch, was usually informal and often
vague. Even if, in giving this definition, Peano refers to the concepts of
Grassmann [13, (1862)] and of Jacobi [22, (1841)], those however were more
rudimentary (radial derivative and Jacobian matrix). As A is not the whole
of Euclidean space, in general the linear operator L in (9) is not unique; if
it is, it is called the derivative of f at x and is denoted by Df(x).
Df(x) is called nowadays the Fréchet derivative of f at x, although

Fréchet gave its informal (geometric) definition only in [9] in 1911. Fréchet
was apparently unaware of Peano’s definition, because one month later [10]
he published another note, acknowledging contributions of Stolz (1893), of
Pierpoint (1905) and of W. H. Young (1910), but not that of Peano.

In [41, (1892)] Peano introduces strict differentiability at x of f : A→ R,
with A ⊂ R interval and x ∈ A, that is, if

(10) limA3y,z→x
f(y)− f(z)

y − z
= f ′(x).

He noticed that strictly differentiability amounts to continuos continuos
diferentiability.

In [36, (1888)] Peano gives the following mean value theorem for vector-
valued functions f of one variable: if f has an (n + 1)-derivative f (n+1) on
[t, t+ h], then there exists an element k ∈ cl conv f (n+1)([t, t+ h]) such that

(11) f(t+ h) = f(t) + hf ′(t) + · · ·+ hn

n!
f (n)(t) +

hn+1

(n+ 1)!
k,

where “conv” stands for the convex hull. Here is another surprise, because
the concept of convex hull has been usually attributed to Minkowski [29,
(1896)].

In [42, (1892)] Peano says that a polynomial function a0 + a1(x − x0) +
. . . an(x − x0)n is said to be a development of f of rank n with respect to
powers of x− x0 if

(12) limx→x0

f (x)− (a0 + a1(x− x0) + . . . an(x− x0)n)
(x− x0)n

= 0.



AMAZING OBLIVION OF PEANO’S CONTRIBUTIONS TO MATHEMATICS 21

(18) This equality can be rewritten in such a way that the n-th coefficient is
given by

an = limx→x0

f (x)− (a0 + a1(x− x0) + . . . an−1(x− x0)n−1)
(x− x0)n

,

which leads to the Peano generalized derivative of order n, that is, ann!
If f (n) (x0) exists, then ann! = f (n) (x0) , but even a discontinuous function
can have a development. For example,

fn (x) :=
{
xn+1θ

(
1
x

)
, if x 6= 0,

0, if x = 0,

where θ(t) is the fractional part of t, has a development of rank n, and

f∞ (x) :=
{

exp(− 1
x2 )θ

(
1
x

)
if x 6= 0,

0, if x = 0, ,

has developments of arbitrary rank; they both have discontinuities in each

neighborhood of 0. Indeed, limx→0
fn (x)
xk

= 0 for 0 ≤ k ≤ n, because

0 ≤ θ
(

1
x

)
< 1, so that a0 = a1 = . . . = an = 0, so that (12) holds with

x0 = 0. Similarly for f∞. On the other hand, t 7−→ θ
(

1
t

)
is discontinuous at

every t ∈ { 1
n : n ∈ Z \ {0}}.

If f is n times differentiable and f (n+1) (t) exists, then there exists ξ ∈
[t, t+h] such that the Peano remainder of rank n+ 1 of the Taylor formula
is (f (n) (ξ)− f (n) (t)

ξ − t
− f (n+1) (t)

) hn+1

(n+ 1)!
.

8. Tangency

The notion of tangent to a circle can be found already in Euclid’s work
and to a curve in Géométrie of Descartes (1637). Till the time of Peano,
several definitions of tangent set to arbitrary figures (19) were formulated,
for example,

(α) a tangent plane to a surface S at a point p is a plane that contains
the tangent straight line at p of every curve traced on the surface S
and passing through p;

(β) a tangent plane to S at p is a plane that contains the tangents at p
to those curves on S that has a tangent straight line and pass through
p.

But these definitions failed to produce non-controversial results in some
cases. In Applicazioni Geometriche [35, (1887)] Peano gives a metric defini-
tion of tangent straight line and of tangent plane and, finally, introduces a

18Peano gives rules for the developments of sums, products and compositions.
19That is, subsets of Euclidean space.
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unifying notion, that of affine tangent cone:

(13) tang(A, x) := x+ Li λ→+∞λ(A− x).

Later, in Formulario Mathematico [48, (1908)], he introduces another type
of tangent cone, namely

(14) Tang(A, x) := x+ Ls
λ→+∞

λ(A− x)

To distinguish the two notions above, we shall call the first lower affine
tangent cone and the second upper affine tangent cone.

As usual, after abstract investigation of a notion, Peano considers signifi-
cant special cases; he calculates the upper affine tangent cone in several basic
figures (closed ball, curves and surfaces parametrized in a regular way).

9. Optimality conditions

A well-known necessary conditions of maximality of a function at a point,
is formulated in terms of derivative of the function and of tangent cone of
the constraint at that point. Consider a real-valued function f : X → R,
where X is a Euclidean affine space, and a subset A of X.

Regula (of optimality) If f is differentiable at x ∈ A and f(x) =
max{f(y) : y ∈ A}, then

(15) 〈Df(x), y − x〉 ≤ 0 for every y ∈ Tang(A, x).

Here Df (x) : X → R is the derivative of the f at x and Tang(A, x) is
the upper tangent cone of A at x.

This is exactly a today formulation of necessary optimality conditions.
But Regula was known to Peano already in [35, (1887)] and it appeared in
the form (15) in [48, (1908)].

Peano applies his regula to numerous examples of minimization problems,
in particular, to those of minimizing the sum of distances of a point from
one or several fixed points or figures.

10. Differential equations

10.1. Linear systems of differential equations. In [37, (1888)] Peano
introduces, what is now called Peano series, to represent the solution of a
general linear system of differential equations. He transforms such a system
into an equation

(16)
dx

dt
= Ax,

where A (t) : Rn → Rn is a linear operator continuously depending on t.
Starting with a constant x0 ∈ Rn, he defines

(17) x1 :=
∫
Ax0 dt, x2 =:

∫
Ax1 dt, . . . , xn+1 =:

∫
Axn dt, . . .
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(integrating from t0 to t), shows that there is M such that |xn (t)| ≤
Mn ‖x0‖ (t− t0)n /n! that for each n, so that the Peano series

x := x0 + x1 + x2 + . . .

uniformly converges as well as its derivative Ax1 + Ax2 + Ax3 + . . . and,
clearly, is a solution of (16) such that x (t0) = x0. Then, on using (17), he
defines

Rtt0 := (I +
∫ t

t0

Ads+
∫ t

t0

Ads

∫ t

t0

Ads+ . . .) ,

where I : Rn → Rn is the identity, which, of course, is the resolvent operator
of (16), and thus the solution to (16) with the initial condition x (t0) = x0,
is given by x (t) = R (t0, t) x0. For A constant, he represents the resolvent
by the exponential of A given by

eA := I +A+ 1
2A

2 + . . .+ 1
n!A

n + . . . ,

so that
x (t) = eA(t−t0)x0.

Finally, he gives a solution of a non-homogeneous equation dx
dt = Ax + b in

the form

x (t) = Rtt0x0 +Rtt0

∫ t

t0

Rt0s b (s) ds.

In this short paper, Peano precedes this luminous theory by the theory
of linear operators, their matrix representations, their norms and the con-
vergent series of operators, in particular, the exponentials of operators.

Peano’s view is unprecedented in that epoch. As observed Garret Birkhoff
in [2], these were foreshadows of the modern theory of Banach spaces and
algebras.

10.2. Nonlinear differential equations. In [34, (1886)] Peano shows that
the equation

(18)
dx

dt
= f(t, x), x (t0) = x0,

where t0 ≤ t ≤ t1 and f : [t0, t1] × R → R, has a solution provided that
f is continuous and that this solution is unique if, moreover, f fulfills the
Lipschitz condition with respect to x, that is, there exists a constant c > 0
such that

(19) |f (t, x0)− f (t, x1)| ≤ c |x0 − x1|
for every t, x0 and x1.

This is the first result of uniqueness of solutions of differential equations
in the literature. To prove it, Peano uses an argument that amounts to the
following Grönwall inequality : if c a real number and du

dt (t) ≤ c u(t) for each
t ≥ t0, then

(20) u (t) ≤ u(t0) ec (t−t0)
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for t ≥ t0. Moreover, Peano uses (20) also to prove continuous dependence
of solution on initial value. Of course, a statement of this inequality as a
fact of its own interest by Grönwall [17, (1919)] has greater merit than its
implicit use.

Later on, Klein asks Peano to generalize this theorem to systems of dif-
ferential equation in view of publication in Mathematische Annalen. Peano
replies that passing from a scalar equation to a system of equations con-
siderably complicates the quest, but a few years later presents a paper [39,
(1890)], in which he solves the problem, which can be stated in the same
terms, the only difference being that now f : [t0, t1]×Rn → Rn for a natural
n ≥ 1. By the way, he gives examples of non-uniqueness in the absence of
the Lipschitz condition (19), for instance,

Fig. 10. Here we show four out of infinity independent solu-
tions: f0, f1, f4 and f∞ ≡ 0.

(21)
dx

dt
= 3x

2
3 , x (0) = 0,

where for every r ∈ [0,∞] , the function

fr (x) :=
{

0, if x ≤ r,
x3, if x > 0,

is a solution of (21); he shows also that the Lipschitz condition is not nec-
essary for uniqueness.

To prove the existence, he uses a sequence of polygonal approximations
(piecewise solutions of differential inequalities) that eventually uniformly
converges to a solution. In doing so, Peano realizes that the existence of a
selection ϕ of a multivalued map Φ is not granted by the axioms of the set
theory, but in the specific problem, with which he is confronted, Peano goes
around the obstacle by picking the least element ϕ (t) of Φ (t) with respect
to the lexicographic order of Rn. He observes that a principle of infinite
arbitrary choices is not a consequence of the axioms.

A year later, Picard publishes a paper [52, (1891)] proving the existence
of solution (but non uniqueness) of a vector equation of type (18) under the
Lipschitz condition (19). The latter is superfluous in view of the result of
Peano and Peano publishes in [43, (1892)] a comment in this vein.
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11. Measure theory

The interest of Peano in measure theory is rooted in his criticism of the
definition of area (1882), of integral (1883) and of derivative (1884).

This criticism leads him to an innovative measure theory, which is ex-
posed systematically and fully in a chapter of Applicazioni geometriche [35,
(1887)], where he refounds the notion of Riemann integral by means of in-
ner and outer measures, as he anticipated in his juvenile work [31, (1883)].
Peano in [35, (1887)], and later Jordan in the paper [24, (1892)] and in the
second edition of Cours d’Analyse [25, (1893)], develop the well known con-
cepts of classical measure theory, namely, measurability, change of variables,
fundamental theorems of calculus, with some methodological differences be-
tween them.

The mathematical tools employed by Peano were really advanced at that
time (and maybe are even nowadays), both on a geometrical and a topolog-
ical level. Peano used extensively the geometric vector calculus introduced
by Grassmann. The geometric notions include oriented areas and volumes
(called geometric forms).

Peano’s measure theory is based on solid grounds of logic, set theory and
topology. In this context he introduces the notions of closure, interior and
boundary of sets (see 5.1).

11.1. Abstract measures and their differentiation. Most innovative
ingrediant of the approach of Peano is the introduction of abstract measures
and their differentiation.

We use the term abstract measures to designate “distributive” set func-
tions of Peano, which are a functional counterpart of distributive families
(6). Most evident distributive set functions are those finitely additive.

Peano defined integral with respect to set-function and derivative of
measure with respect to another measure, which constituted a first modern
measure theory preceding that of Lebesgue.

By retracing research on coexistent magnitudes (grandeurs coexistantes)
by Cauchy [5, (1841)], Peano in Applicazioni geometriche del calcolo in-
finitesimale [35, (1887)] defines the “density” (strict derivative) of a “mass”
(a distributive set function) with respect to a “volume” (a positive distribu-
tive set function), proves its continuity (whenever the strict derivative exists)
and shows the validity of the mass-density paradigm: “mass” is recovered
from “density” by integration with respect to “volume”.

It is remarkable that Peano’s strict derivative provides a consistent math-
ematical ground to the concept of “infinitesimal ratio” between two mag-
nitudes, successfully used since Kepler. In this way the classical (pre-
Lebesgue) measure theory reaches a complete and definitive form in Peano’s
Applicazioni geometriche (20).

20A pioneering role of that book is remarked by J. Tannery [58, (1887)]: “Chapter V is
titled: Geometric magnitudes. This chapter is probably the most relevant and interesting,
the one that marks the difference of the Book of Peano with respect to other classical



26 SZYMON DOLECKI AND GABRIELE H. GRECO

In order to grasp the essence of Peano’s contribution and to compare
it with analogous results by Cauchy, Lebesgue, Radon and Nikodym, we
present it in a particular significant case.

Peano’s strict derivative of a set function (for instance, the “density” of
a “mass” µ with respect to the “volume”) at a point x̄ is computed, when
it exists, as the limit of the quotient of the “mass” with respect to the
“volume” of a cube Q, when Q→ x̄ (that is, the supremum of the distances
of the points of the cube Q from x̄ tends to 0). In formula, Peano’s strict
derivative gP (x̄) of a mass µ at x̄ is given by:

(22) gP (x̄) := lim
Q→x̄

µ(Q)
voln(Q)

.

On the other hand, Cauchy’s derivative [5, (1841)] is obtained as the limit
of the ratio between “mass” and “volume” of a cube Q including the point
x̄, when Q → x̄. In formula, Cauchy’s derivative gC(x̄) of a mass µ at x̄ is
given by:

(23) gC(x̄) := lim
Q→x̄
x̄∈Q

µ(Q)
voln(Q)

.

Observe that (23) is analoguous to derivative (9), while (22) to strict
derivative (10).

Lebesgue’s derivative of set functions is computed à la Cauchy. Notice
that Lebesgue considers finite σ-additive and absolutely continuous mea-
sures as “masses”, while Peano considers distributive set functions. Lebesgue’s
derivative exists (i.e., the limit (23) there exists for almost every x̄), it is
measurable and the reconstruction of a “mass” as the integral of the deriva-
tive is assured by absolute continuity of the “mass” with respect to volume.
On the contrary, Peano’s strict derivative does not necessarily exist, but
when it exists, it is continuous and the mass-density paradigm holds:

µ(Q) =
∫
Q
gP d voln .

The constructive approaches to differentiation of set functions correspond-
ing to the two limits (22) and (23) are opposed to the approach given by
Radon [54, (1913)] and Nikodym [30, (1930)], who define the derivative in
a more abstract and wider context than those of Lebesgue and Peano. As
in the case of Lebesgue, a Radon-Nikodym derivative exists; its existence is
assured by assuming absolute continuity and σ-additivity of the measures.

Treatises: definitions concerning sets of points, exterior, interior and limit points of a
given set, distributive functions (coexistent magnitudes in the sense of Cauchy), exterior,
interior and proper length (or area or volume) of a set, the extension of the notion of
integral to a set, are stated in an abstract, very precise and very clear way.”
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11.2. Sweeping-tangent theorem. The fashionable Mamikon’s sweeping-
tangent theorem says that the area of a tangent sweep of a curve is equal to
the area of its corresponding tangent cluster (see the figure below)

Fig. 11. The three figures have the same area, because they
are swept by the same tangent vector to the inner ellipsis (or
point). The areas marked by the same letter have the same
area as well.

This theorem, published in [28, (1981)], has numerous applications, as it
enables one to obtain the areas of complicated figures almost without calcu-
lation, by reducing the problem to that of the area of some simple figures. In
[15] the authors Greco, Mazzucchi and Pagani discovered with stupefaction
that in [35, (1887) p. 242] Peano considerably generalizes the Mamikon’s
theorem to be, and mentions it as one of the following four special cases (of
which Mamikon’s theorem corresponds to 3):

(1) A moves along a straight line and the angle of AB with that line is
constant;

(2) A is fixed;
(3) AB is tangent at A to the curve described by A;
(4) AB is of constant length and normal to the curve described by its

midpoint.
In fact, Peano uses the Grassmann external algebra to give a formula

for the area of plane figures that are described by a segment AB of variable
length that never passes twice through the same point. He gives the following
formula for that area:

1
2

∫ b

a

∣∣∣∣det
(
v1(t) v2(t)
v′1(t) v′2(t)

)∣∣∣∣ dt,
where v1(t), v2(t) are the components of the vector B (t)−A (t) and t ∈ [a, b] .
It is clear from this formula, that the area depends only on a vector and not
on particular couples A (t) , B (t) .
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[18] A. Harnack. Über den Inhalt von Punktmengen. Mathematische Annalen, 25:241–
250, 1885.
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Bull. des sciences mathématiques, 11:237D̄239, 1887.

[59] J. Thomae. Einleitung in die Theorie der bestimmten Integrale. Nebert, Halle, 1875.
[60] A. Voss. Differential- und integralrechnung. In Encyklopädie der mathematischen Wis-
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