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Abstract. Conditions on a topological space X under which the space C(X;R)
of continuous real-valued maps with the Isbell topology � is a topological group
(topological vector space) are investigated. It is proved that the addition is
jointly continuous at the zero function in C�(X;R) if and only if X is infra-
consonant. This property is (formally) weaker than consonance, which implies
that the Isbell and the compact-open topologies coincide. It is shown the
translations are continuous in C�(X;R) if and only if the Isbell topology coin-
cides with the �ne Isbell topology. It is proved that these topologies coincide
if X is prime (that is, with at most one non-isolated point), but do not even
for some sums of two consonant prime spaces.

1. Introduction

In [19] and [20] Isbell introduced and studied a topology on the space C(X;Z) of
continuous functions from a topological space X to a topological space Z, de�ned in
terms of (what is now called) compact families of open subsets ofX and open subsets
of Z. The Isbell topology is �ner than the compact-open topology and coarser than
the natural topology (that is, the topological re�ection of the natural convergence,
most often called continuous convergence). Recently Jordan introduced in [22]
several intermediate topologies, �ner than the Isbell and coarser than the natural
topology, that turn out to be instrumental in understanding function spaces. One
of them is the so-called �ne Isbell topology.
The Isbell topology and the natural topology coincide on C(X; $) (that can be

identi�ed with the set of closed subsets of X) and on the homeomorphic space
C(X; $�) (of open subsets of X) where it is homeomorphic to the Scott topology 1.
The open sets for the Scott topology on C(X; $) are precisely the compact families of
open subsets of X. A topological space X is called consonant [7] if these topologies
on C(X; $�) coincide with the compact-open topology.2

It is known that if X is consonant, then the Isbell topology on C(X;R) coincides
with the compact-open topology. We prove that the converse is true for completely
regular spaces, partially answering [28, Problem 62]. Answering [28, Problem 61]
positively, we also show that the Isbell topology on C(X;Z) is completely regular
whenever Z is.
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1$ := f?; f1g ; f0; 1gg and $� := f?; f0g ; f0; 1gg are two homeomorphic representations of the

Sierpínski topology on f0; 1g :
2In other words, if each compact family on X is compactly generated.
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There are consonant examples (e.g., [13, Example 5.12], [15]) of spaces, for which
the Isbell topology is strictly coarser than the natural topology, but to our knowl-
edge there is so far no characterization of X for which the Isbell topology and the
natural topology coincide on C(X;R).
The natural convergence is always a group convergence, in particular, it is invari-

ant under translations3, hence the natural topology is also invariant under trans-
lations as the topological re�ection of the natural convergence (see [10]), but need
not be a group topology, e.g. [21]. In [27], B. Papadopoulos proposes a su¢ cient
condition on a topological space X for the Isbell topological space C�(X;R) to be
a vector space topology. However, it seems that no example has been known so far
of a space X, for which C�(X;R) is not a vector space topology.
In this note, we investigate under what conditions the Isbell topology is a group

topology, equivalently a vector space topology, because we prove that multiplication
by scalars is jointly continuous for the Isbell topology.
In general, a topology on an abelian group is a group topology if and only if it

is invariant under translations and if the group operation is (jointly) continuous at
the neutral group element. Therefore we are confronted with two quests about the
Isbell topology on C(X;R):

(1) invariance by translations, and
(2) continuity of the addition at the zero function 0, that is, the property

(1.1) N�(0) +N�(0) � N�(0):

More speci�cally, we show that the space C�(X;R) of real-valued continuous
functions on X endowed with the Isbell topology is invariant under translations if
and only if the Isbell and �ne Isbell topologies coincide. In [22], Jordan provides
an example of a topological space X, for which the Isbell and �ne Isbell topologies
on C(X;R) do not coincide. This shows that there exists X for which C�(X;R) is
not invariant by translations.
We call a space infraconsonant if every compact family A contains another com-

pact family B such that every pairwise intersection of elements of B belongs to A,
and we show that (1.1) holds if and only if X is infraconsonant. Of course, every
consonant space is infraconsonant. There are infraconsonant and non consonant
spaces, but we do not know yet of a completely regular one.

Problem 1.1. Does there exist a completely regular infraconsonant space that is
not consonant?

We call a topological space prime if it has at most one non-isolated point. We
show that C�(X;R) is invariant under translations if X is a prime space and that
there are prime spaces that are not infraconsonant. In other words, C�(X;R) may
be translation-invariant without satisfying (1.1). We also show that C�(X;R) may
fail to have either of these properties. However, we do not know if it can satisfy
(1.1) without being invariant under translations. In other words:

Problem 1.2. Does there exist a completely regular infraconsonant space X such
that C�(X;R) has discontinuous translations?

3Actually, the natural convergence is a convergence vector space.
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A positive solution to this problem would also provide a positive answer to
Problem 1.1, because C�(X;R) is a topological group if X is consonant 4. We do
not know if the converse is true:

Problem 1.3. Does there exist a non consonant completely regular space X such
that C�(X;R) is a topological group?

In view of our result, a prime positive solution to Problem 1.1 would also provide
a positive answer to Problem 1.3.

2. Generalities

If A is a family of subsets of a topological space X then OX(A) denotes the
family of open subsets of X containing an element of A. In particular, if A � X
then OX(A) denotes the family of open subsets of X containing an element of A.
A family A = OX(A) is compact if whenever P � OX and

S
P 2 A then there is

a �nite subfamily P0 of P such that
S
P0 2 A. Of course, for each compact subset

K of X; the family OX(K) is compact. The following proposition extends the fact
that continuous functions are bounded on compact sets.

Proposition 2.1. If A is a compact family on X and f 2 C(X;R), then there is
A 2 A such that f(A) is bounded.

Proof. As
S
n<! f

�(fr : jrj < ng) = X 2 A and f is continuous, there exists n < !
such that f�(fr : jrj < ng) 2 A by the compactness of A. �

We denote by �(X) the collection of compact families on X. Seen as a family of
subsets of OX (the set of open subsets of X), �(X) is the family of open subsets of
the Scott topology ; hence every union of compact families is compact, in particularS
K2KOX(K) is compact if K is a family of compact subsets of X. A topological

space is called consonant if every compact family A is compactly generated, that
is, there is a family K of compact sets such that A =

S
K2KOX(K). Similarly,

k(X) := fO(K) : K � X compact g is a basis for a topology on OX , and a
space X is consonant if and only if this topology coincides with the Scott topology.
Bouziad calls weakly consonant [3] a space X in which for every compact family A
there is a compact subset K of X such that OX(K) � A.

Lemma 2.2. [22, Lemma 36] Consonance and weak consonance are equivalent
among regular topological spaces.

The Isbell topology on C(X;Z) can be de�ned by the following subbase of open
sets

[A; U ] := ff 2 C(X;Z) : 9A 2 A; f(A) � Ug;
where A ranges over �(X) and U ranges over open subsets of Z. We write C�(X;Z)
for the set C(X;Z) endowed with the Isbell topology, and Ck(X;Z) if it is endowed
with the compact-open topology. A space X is called Z-consonant if C�(X;Z) =
Ck(X;Z). Note that if $ denotes the Sierpiński space, then $-consonant means
consonant. Moreover, the following is immediate.

Proposition 2.3. X is consonant if and only if it is Z-consonant for every Z. In
particular, if X is consonant, then C�(X;R) is a topological vector space.

4Problem 1.2 has been recently solved in the negative in [8].
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[28, Problem 62] asks for what spaces Z (other than $) does Z-consonance imply
consonance. We have the following partial answer, which re�nes [6, Theorem 4.4]
which was announced without proof and proved in [24, Theorem 4.17] 5.
The grill of a family A of subsets of X is the family A# := fB � X : 8A 2 A,

A \B 6= ?g. Note that if A = O(A), then
A 2 A ()Ac =2 A#.

Proposition 2.4. If X is completely regular and R-consonant, then it is consonant.

Proof. If X is R-consonant then in particular Nk(0) � N�(0) where 0 denotes the
zero function. Hence for every A 2 �(X) there exist a compact subset K of X and

r > 0 such that [K;Br] �
h
A; B 1

2

i
where Br := (�r; r). In view of Lemma 2.2, it

is su¢ cient to show that O(K) � A. Assume on the contrary that there is an open
set U such that K � U and U =2 A. Then the closed set F := X n U is disjoint
from K and F 2 A#. As X is completely regular, there is h 2 C(X;R) such that
h(K) = f0g and h(F ) = f1g. Then h 2 [K;Br] but h =2

h
A; B 1

2

i
because 1 2 h(A)

for every A 2 A; a contradiction. �
In the proof above, we used the well-known fact that if A is a compact subset of

a completely regular space X and F is a closed subset of X such that A \ F = ?,
then there exists h 2 C(X; [0; 1]) such that h(A) = f0g and h(F ) = f1g. We extend
this fact to a closed set and a compact family.

Lemma 2.5. If A = O(A) is a compact family of subsets of a completely regular
topological space X, and F is a closed subset of X with F c 2 A, then there is A 2 A
and h 2 C(X; [0; 1]) such that h(A) = f0g and h(F ) = f1g.

Proof. By complete regularity, for every x =2 F , there is an open neighborhood Ox of
x and hx 2 C(X; [0; 1]) such that hx(Ox) = f0g and hx(F ) = f1g. Therefore F c =S
x=2F Ox 2 A, so that by the compactness of A there is n < ! and x1; : : : ; xn =2 F

such that A =
S
1�i�nOxi 2 A. The continuous function min1�i�n hxi is 0 on A

and 1 on F . �
Papadopoulos says that a space X has property (A�) if whenever A 2 �(X) and

A1 and A2 are open subsets of X such that A1[A2 2 A, there exists �lters Fi such
that Ai 2 Fi, i = 1; 2 such that OX(Fi) 2 �(X) and O(F1)\O(F2) � A. The main
result of [27] is that property (A�) is su¢ cient for the Isbell topology on C(X;R)
to be a vector space topology. If X is regular, this result follows immediately from
Proposition 2.3 because of the following:

Proposition 2.6. Let X be a regular topological space. Then X is consonant if
and only if X has property (A�):

Proof. Assume thatX is consonant and that A1[A2 2 A where A 2 �(X): Because
X is consonant, there is a compact set K � A1 [ A2 such that O(K) � A. By
regularity and compactness, there are �nitely many closed sets Ci such that each
Ci is a subset of either A1 or A2 and K � [i=ni=1Ci. Therefore, there exist compact
subsets K1 of A1 and K2 of A2 such that K = K1 [K2, so that O(K1) and O(K2)
are the sought compact �lters. Conversely, if X satis�es (A�) then for every A 2 A

5Note that the notion of R-consonance introduced in [24] (coincidence of the natural and
compact-open topologies on C(X;R)) is stronger than our notion and should not be confused.
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there is a compact �lter F such that A 2 F and O(F) � A. Because F is a
compact �lter in a regular space, O(F) = O (adhF) and adhF is compact (e.g. [7,
Proposition 2.2]). Therefore, A is compactly generated and X is consonant. �
Lemma 2.7. [5] If A 2 �(X) and C is a closed subset of X such that C 2 A#
then

A _ C := O (fA \ C : A 2 Ag)
is a compact family on X:

Lemma 2.8. If A 2 �(X) and A0 2 A then

A # A0 := O (fA 2 A : A � A0g)
is a compact family on X.

Proof. If
S
i2I Oi 2 A # A0 then there is A 2 A such that A � A0 and A �

S
i2I Oi

so that A �
S
i2I (Oi \A0). By compactness of A there is a �nite subset F of I

such that
S
i2F (Oi \A0) 2 A. But

S
i2F (Oi \A0) � A0 so that

S
i2F (Oi \A0) 2

A # A0 and
S
i2F Oi 2 A # A0. �

The following theorem answers [28, Problem 61].

Theorem 2.9. If Z is completely regular, then C�(X;Z) is completely regular.

Proof. Let f 2 [A; O] where A 2 �(X) and O is Z-open. As A is compact and f
continuous, OZ(f(A)) is compact, and since Z is completely regular, by Lemma 2.5,
there is A 2 A and h 2 C(Z; [0; 1]) such that h(f(A)) = f0g and h(ZnO) = f1g.
De�ne

F (g) := inf
A2A

sup
x2A

h(g(x)) = sup
H2A#

inf
x2H

h(g(x))

for each g 2 C(X;Z). Then F (f) = 0 and F (g) = 1 for each g =2 [A; O]. Moreover,
F : C�(X;Z) ! [0; 1] is continuous. To see that F� ([0; r)) is open for each
r 2 [0; 1], notice that F (g) < r if and only if there is Ar 2 A such that g(Ar) � [0; r);
that is, if and only if g 2 [A; h� ([0; r))]. On the other hand, if 0 � s < 1 and
s < F (g), then, by the second equality, there exist s < t < F (g) and a closed set
H 2 A# such that t � h(g(x)) for each x 2 H, thus g(H) � h�(s; 1]. By Lemma
2.7, A _H is compact, and if an open set includes H then it belongs to A _H, in
particular g�h�(s; 1] 2 A_H, that is, g belongs to the open set [A _H;h�(s; 1]] :
If now b 2 [A _H;h�(s; 1]], then there is A 2 A such that h(b(A \ K)) � (s; 1],
hence

s < sup
A2A

inf
x2A\H

h(b(x)) � inf
A2A

sup
x2A\H

h(b(x)) � inf
A2A

sup
x2A

h(b(x)) = F (b):

�
Proposition 2.10. Multiplication by scalars is jointly continuous for the Isbell
topology.

Proof. Let f 2 C(X;R) and r 2 R be such that rf 2 [A; O], where A is a compact
family on X and O is an open subset of R. If r = 0 then it is enough to consider
O = B(0; ") with " > 0. By Proposition 2.1 there exist A0 2 A and R > 0
such that f(A0) � B(0; R) and thus f(A) � B(0; R) for each basic element A of
A0 := A # A0. Therefore f 2 [A0; B(0; R)] and B(0; "R )[A0; B(0; R)] � [A; O]. Let
jrj > 0. Since O ((rf) (A)) is a compact family of the consonant space R; there
exists a compact subset K of O such that OR(K) � O ((rf) (A)), hence there exist
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A0 2 A and " > 0 such that (rf) (A0) � B(K; ") � B(K; 2") � O. If A0 := A # A0,
then f(A) � 1

rB(K; ") for a base of elements A of A0, hence f 2
�
A0; 1rB(K; ")

�
.

On the other hand, there is � > 0 such that B
�
1; �jrj

�
B(K; ") � B(K; 2") and thus

B(r; �)
�
A0; 1rB(K; ")

�
� O. �

Corollary 2.11. If C�(X;R) is a topological group then it is a topological vector
space.

3. Structure of C�(X;R) at the zero function

As usual, if A and B are subsets of a group, A+B := fa+ b : a 2 A; b 2 Bg and
if A and B are two families of subsets, A+ B := fA+B : A 2 A; B 2 Bg.
As we have mentioned, a topology on an abelian group is a group topology if and

only if translations are continuous and N (0)+N (0) � N (0): In this subsection, we
investigate the latter property, that is,

(3.1) N�(0) +N�(0) � N�(0);
for the space C�(X;R). If (pn) is a decreasing sequence of positive numbers that
tends to zero, then"

n\
i=1

Ai;
�
� n
max
i=1

pi;
n
max
i=1

pi

�#
�

n\
i=1

[Ai; (�pi; pi)] ;

and thus N�(0) has a �lter base of the form
(3.2) f[A; (�pn; pn)] : A 2 �(X); n 2 Ng ;
because a �nite intersection of compact families is compact.
We call a topological space X infraconsonant if for every compact family A

on X there is a compact family B such that B _ B := fB \ C : B 2 B; C 2 Bg
is a (not necessarily compact) subfamily of A. Note that if X is consonant then
every compact family includes a compact �lter of the form O(K) for a compact
set K. Taking B = O(K) gives infraconsonance, so that every consonant space is
infraconsonant.

Theorem 3.1. Let (G;+) be an abelian topological group. If X is infraconsonant,
then the addition is continuous at 0 in C�(X;G). Moreover if X is completely
regular, then the addition is continuous at 0 in C�(X;R) if and only if X is infra-
consonant.

Proof. Assume that X is infraconsonant. Let A 2 �(X) and V 2 NG(0): By in-
fraconsonance, there exist a compact subfamily B of A such that B _ B � A. If
W 2 NG(0) such that W +W � V , then [B;W ] + [B;W ] � [A; V ], which proves
(3.1):
Conversely, assume that X is not infraconsonant. Let A be a compact family

witnessing the de�nition of non infraconsonance. Note that B _ C * A for every pair
of compact families B and C for otherwise D = B \ C would be a compact subfamily
of A such that D _D � A. Let V =

�
� 1
2 ;

1
2

�
: We claim that for any pair (B; C)

of compact families and any pair (U;W ) of R-neighborhood of 0; [B; U ] + [C;W ] *
[A; V ]. Indeed, there exist B 2 B and C 2 C such that B \ C =2 A. Then
Bc [ Cc 2 A#. Moreover, Bc =2 B# so that by Lemma 2.5, there exist B1 2 B and
f 2 C(X;R) such that f(B1) = f0g and f(Bc) = f1g: Similarly, Cc =2 C so that
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there exist C1 2 C and g 2 C(X;R) such that g(C1) = f0g and g(Cc) = f1g: Then
f + g 2 [B; U ] + [C;W ] but 1 2 (f + g)(A) for all A 2 A so that f + g =2 [A; V ]. �

Complete regularity cannot be relaxed (to regularity) in Theorem 3.1.

Example 3.2. There exist regular non-infraconsonant spaces X, for which the
addition is jointly continuous at 0 in C�(X;R). In [17] Herrlich builds a regular
space, on which each continuos function is constant. To this purpose, for each reg-
ular space Y he constructs a regular space H(Y ) such that Y is closed in H(Y ),
and each f 2 C (H(Y );R) is constant on Y . He de�nes H0(Y ) := Y;Hn+1(Y ) :=
H (Hn (Y )) and X :=

S
n<!H

n(Y ) with the �nest topology for which all the injec-
tions are continuous. Then obviously each continuous (real-valued) function on X
is constant. Moreover X is regular. This fact is stated in [17] in case where Y is
a singleton, but is true for an arbitrary regular space Y . Let Y be a regular non-
infraconsonant space, for instance the space from Example 3.7. As all continuous
functions on X are constant, the continuity of the (joint) addition on C�(X;R)
follows from the continuity of the addition on R. If X were infraconsonant, then
its closed subset Y would be infraconsonant, in contradiction with the assumption.

As we have mentioned, C�(X; $�) is the lattice of open subsets of X endowed
with the Scott topology, in which open sets are exactly the compact families of open
subsets of X. Dually, C�(X; $) is the set of closed subsets of X endowed with the
upper Kuratowski topology, in which F is open if the family Fc = fX n F : F 2 Fg
is compact. The following was prompted by a conversation with Ahmed Bouziad
(University of Rouen) in June 2008 (in Erice), who asked us if infraconsonance was
related to the joint continuity of the union operation on C�(X; $).

Lemma 3.3. If X is regular and infraconsonant, then for every A 2 �(X) and
every A 2 A; there is C 2 �(X) such that A 2 C and C _ C � A.

Proof. Assume that X is infraconsonant and regular. If A is a compact family
on X, then for each element A of A there is A0 2 A such that clA0 � A. The
family A1 = A # A0 is compact by Lemma 2.8 so that there is a compact family
B such that B _ B � A1. For each B1 and B2 in B, there is B 2 A; B � A0
such that B � B1 \ B2: Therefore the family B1 = B _ clA0 contains A, satis�es
B1_B1� A1� A, and is compact by Lemma 2.7. �

We shall consider binary maps: the intersection \ and the union [, de�ned by
\(A;B) := A \B and [(A;B) := A [B.

Proposition 3.4. Let X be a regular topological space. The following are equiva-
lent:

(1) X is infraconsonant;
(2) The intersection \ : C�(X; $�) � C�(X; $�) ! C�(X; $

�) is (jointly) con-
tinuous for the Scott topology;

(3) The union [ : C�(X; $) � C�(X; $) ! C�(X; $) is (jointly) continuous for
the upper Kuratowski topology.

Proof. The equivalence between (2) and (3) is immediate, because these topologies
are isomorphic by complementation. Assume X is infraconsonant and let U and
V be two open subsets of X: Let A be a Scott open neighborhood of \(U; V ), i.e.,
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a compact family containing U \ V . By Lemma 3.3, there is a compact family C
containing U \ V such that

\(C; C) = C _ C � A:
Note that C is a common Scott neighborhood of U and V so that \ is continuous.
Conversely, assume that \ is continuous and consider a compact family A:

Since \�1(A) has non-empty interior there are compact families B and C such
that B � C � \�1(A). The compact family D = B \ C then satis�es D _D � A so
that X is infraconsonant. �
Note that the implication (2) =) (1) does not use regularity. It is well known

(e.g. [30]) that the natural convergence on C(X; $) is topological if and only if X is
core-compact. A topological space X is core-compact if for every x 2 X and every
U 2 O(x) there is V 2 O(x) that is relatively compact in U .
Therefore, if X is core-compact then the Isbell topology and the natural conver-

gence coincide on C(X; $), which is easily seen to make the map \ jointly contin-
uous. In view of Proposition 3.4, X is then infraconsonant. Moreover X is locally
compact if and only if the natural convergence coincides with the compact-open
topology on C(X; $) (e.g. [30, Proposition 2.19]), that is, every compact family
is compactly generated. Therefore, if X is core-compact but not locally compact,
then X is infraconsonant but not consonant. Such a space is constructed in [18,
Section 7].

Corollary 3.5. There exists a (non Hausdor¤ ) infraconsonant space that is not
consonant.

We will now exhibit a class of prime (hence completely regular) non-infraconsonant
spaces. Recall that if (Fn)n<! is a sequence of �lters, then the contour F is de�ned
by F :=

S
p<!

T
n�p Fn [11]. A prime space X (with only non-isolated point 1) is

a contour space if there exists a family fXn : n 2 !g of disjoint in�nite subsets of
X n f1g such that X =

S
n<!Xn [ f1g and

N (1) = f1g ^
[
p<!

\
n�p

Fn;

where each Fn is a free �lter on Xn. Notice that the sets f1g [
S
n�p Fn, where

Fn 2 Fn and p < ! form a �lter base of N (1). Therefore
8n<! Xn =2 N (1)#;(3.3)

8V 2N (1) jfn 2 ! : Xn \ V = ?gj < !:(3.4)

Compact sets in a contour space are �nite. In fact, if K is compact, then
Kn := K \Xn is �nite, because Fn is �ner than the co�nite �lter of Xn for each
n < !; as N (1) �

T
n2! Fn the set

S
n<!Kn is closed and does not contain 1, so

that it consists of isolated points, and thus is �nite.
In particular, 1 is a compact-repellent point, that is, 1 =2 cl (K n f1g) for each

compact set. On the other hand, Xn is closed for each n and the upper and the
lower limit of (Xn)n<! coincide and are equal to f1g;6 Thus, by [7, Theorem 6.1],
contour spaces are not consonant. Actually,

Theorem 3.6. Contour prime spaces are not infraconsonant.

6that is, f1g =
T
p<! cl

�S
n�pXn

�
=
T
N2[!]! cl

�S
n2N Xn

�
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Proof. The family

D := fD2 O(1);8n2! : D \Xn 6= ?g

is non-empty and compact. Indeed, if fO� : � 2 Ig is an open cover of D 2 D; there
is �0 2 I such that 1 2 O�0 and by (3.4), the set J := fn 2 ! : Xn \ O�0 = ?g
is �nite. For each n 2 J; there is xn 2 D \ Xn, and there is �n 2 I such that
xn 2 O�n : Then

S
n2J[f0gO�n 2 D.

On the other hand, if C � O(1) is a compact family, there is n0 such that C is
free on Xn0 , that is, the restriction of C to Xn0 is �ner than the co�nite �lter of
Xn0 . Otherwise, for each n 2 ! there would be a �nite subset F (n) of Xn such
that F (n)#C:
On the other hand, V := X n

S
n2! F (n) 2 O(1), hence, by the compactness of

C, there exists a �nite set T such that V [ T 2 C and (V [ T ) \
S
n2! F (n) � T .

This is a contradiction with F (n)#C for all n:
By the compactness of C there exists C0 2 C such that C0 \Xn0 is �nite. As C

is free on Xn0 , there is C 2 C disjoint from C0 \Xn0 , so that C _ C * D. Hence X
is not infraconsonant. �

Example 3.7. [The Arens space is not infraconsonant] Recall that the Arens space
has underlying set f1g [ fxn;k : n 2 !; k 2 !g and carries the topology in which
every point but 1 is isolated and a base of neighborhoods of 1 is given by sets of
the form

f1g [
[
n�p

fxn;k : k � f(n)g;

where p ranges over ! and f ranges over !!:

In [12] a notion of sequential contour of arbitrary order was introduced. A
sequential contour of rank 1 is a free sequential �lter (that is, the co�nite �lter of
a countable set); a sequential contour of rank � > 1 is a contour of the sequence
(Fn)n<!, where Fn is a sequential contour of rank �n on a countable set Xn,
fXn : n < !g are disjoint, and � = supn<!(�n + 1). It follows that

Corollary 3.8. For every countable ordinal � the prime topology determined by a
sequential contour of rank � is not infraconsonant.

We do not know however if there are completely regular infraconsonant spaces
that are not consonant.
A. Bouziad pointed out to us that, in view of Proposition 3.4, Theorem 3.6

also shows that the assumption of separation is essential in the result of J. Lawson
stating that a compact Hausdor¤ semitopological lattice is topological [23]. Indeed,
if X is regular but not infraconsonant (for instance the Arens space), then C(X; $�)
is a T0 compact semitopological lattice (i.e., \ is separately continuous) which is
not a topological lattice, because \ is not jointly continuous.

4. Continuity of translations

As we mentioned, Francis Jordan introduced in [22] the �ne Isbell topology on
the set C(X;Y ). We shall now prove that translations are always continuous for
the �ne Isbell topology, and that the neighborhood �lters at the zero function 0
for the Isbell and for the �ne Isbell topologies coincide. Therefore translations are



10 SZYMON DOLECKI AND FRÉDÉRIC MYNARD

continuous for the Isbell topology if and only if it coincides with the �ne Isbell
topology.
If N and M are two subsets of X � Y , the set N is buried in M; in symbols

N � M; if for every x 2 X there exists V 2 OX(x) and W 2 OY (N(x)) such
that V �W � M . If f 2 C(X;Y ) and A � X; we denote by fjA the graph of the
restriction of f to A. A subbase for the �ne Isbell topologies is given by sets of the
form:

hA;Mi :=
�
f 2 C(X;Y ) : 9A 2 A; fjA �M

	
;

where A ranges over compact families of X and M ranges over open subsets of
X � Y . We denote by C�(X;Y ) the set C(X;Y ) endowed with the �ne Isbell
topology. If (G;+) is a topological group, we denote by 0 its neutral element and
by 0 the constant function zero of C(X;G):

Theorem 4.1. Let (G;+) be a topological group. The �ne Isbell topological space
C�(X;G) is invariant by translations.
The neighborhood �lters at 0 for the �ne Isbell and the Isbell topologies coincide.

Proof. (1) N�(0) � N�(0) : is clear. Consider now hA;Mi such that 0 2 hA;Mi ;
A 2 �(X) and M is open in X � G. There is A 2 A such that for every x 2 A;
there is Vx 2 O(x) and Wx 2 OG(0) such that Vx �Wx � M: Since A is compact
and A =

S
x2A

Vx there is a �nite subset F of A such that B =
S
x2F

Vx 2 A: But then

W =
T
x2F

Wx 2 OG(0) and B �W �M so that

0 2 [A # B;W ] � hA;Mi :
(2) N�(f) � f +N�(0) : Let A 2 �(X), B 2 OG(0). Consider M :=

S
x2X

fxg �

(f(x) +B). Then f 2 hA;Mi and hA;Mi � f + [A; B]. Indeed, if h 2 hA;Mi
then there is A 2 A such that for all x 2 A, there is an open neighborhood
Vx of x and an open neighborhood Wx of h(x) such that Vx � Wx � M . In
particular, fxg �Wx �M so that Wx � f(x) +B and (h� f) (x) 2 B. Therefore
(h� f) (A) � B.
(3) N�(f) � f +N�(0) : Let A 2 �(X) and let M be an open subset of X �G

such that f 2 hA;Mi ; that is, there is A 2 A such that for all x 2 A, there
is an open neighborhood Vx of x and an open neighborhood Wx = f(x) + Bx
of f(x); where Bx 2 OG(0) such that Vx � Wx � M . By continuity of f we
may assume that f(Vx) � f(x) + B0x � Wx for each x; where B0x 2 OG(0) and
B0x + B

0
x � Bx. Since A is compact and A =

S
x2A

Vx there is a �nite subset F

of A such that A1 =
S
x2F

Vx 2 A: Let W 2 OG(0) be such that W = �W and

W �
T
x2F

B0x 2 OG(0). Then f +[A # A1;W ] � hA;Mi. Indeed, if h 2 [A # A1;W ]

then there is A2 2 A; A2 � A1 such that h(A2) � W . For each x 2 A2; there is
tx 2 F such that x 2 Vtx . Note that Vtx �Wtx �M and that f(x) 2 f(Vtx) and

f(Vtx) +W � f(x) +B0x +B0x �Wtx

so that Vtx � (f(x) +W ) � M which completes the proof because f(x) + W 2
O ((f + h) (x)) and Vtx 2 O(x). �

Corollary 4.2. C�(X;G) is invariant by translation if and only if C�(X;G) =
C�(X;G):
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The result above also provides a more handy description of the �ne Isbell topol-
ogy on C(X;G) when G is a topological group (for instance for C�(X;R)) :

N�(f) = f + f[A; B] : A 2 �(X); B 2 OG(0)g :

Theorem 4.3. The following are equivalent:
(1) C�(X;R) is a topological vector space;
(2) C�(X;R) is a topological group;
(3) X is infraconsonant.

Proof. If C�(X;R) is a topological group thenN�(0)+N�(0) = N�(0): ButN�(0) =
N�(0) so that by Theorem 3.1, X is infraconsonant. Conversely, if X is infracon-
sonant, then N�(0) +N�(0) = N�(0) and translations are continuous in C�(X;R)
so that C�(X;R) is a topological group. Remains to see that if C�(X;R) is a
topological group, it is also a topological vector space.
First, note that for each �xed f 2 C(X;R) the map Sf : R! C�(X;R) de�ned

by Sf (r) = rf is continuous. Indeed, for each A 2 �(X); there is A 2 A and
R 2 R such that f(A) � B(0; R) by Proposition 2.1. Therefore for each O 2 NR(0)
there is � > 0 such that B(0; �) � f(A) � O: Thus, if rf + [A; O] 2 N�(f) then
B(r; �) � f = rf +B(0; �) � f � rf + [A; O]:
Note also that S : R�C�(X;R)! C�(X;R) de�ned S(r; f) = rf is continuous at

(r; 0) for each r by Proposition 2.10. Let now r 2 R and f 2 C(X;R) and consider
rf +W 2 N�(f); where W 2 N�(0): Since C�(X;R) is a topological group, there
is V 2 N�(0) such that V + V � W: By continuity of Sf ; there is T 2 NR(r) such
that T � f � rf + V . Moreover, by continuity of S at (r; 0) there is T 0 2 NR(r);
T 0 � T and U 2 N�(0) such that T 0 � U � V . Then

T 0 � (f + U) = T 0 � f + T 0 � U � rf + V + V � rf +W;
which proves continuity of S at (r; f) because f + U 2 N�(f): �

In particular, in view of Example 3.7, the �ne Isbell topology does not need to
be a group topology. In [22, Example 1] Jordan shows that if X and Y are two
completely regular consonant spaces such that the topological sum Z := X � Y is
not consonant then C�(Z;R) < C�(Z;R). In view of Corollary 4.2 we obtain:

Example 4.4. There exists a space Z such that translations of C�(Z;R) fail to be
continuous.

Following [22], we say that a space X is sequentially inaccessible provided that
for any sequence (Fn)n2! of countably based z-�lters (�lters based in zero sets) on
X

(8n adhFn = ?) =) adh(
\
n2!

Fn) = ?:

Jordan proved [22] that ifX is completely regular, Lindelöf and sequentially inacces-
sible, then the �ne Isbell topology and the natural topology coincide on C(X;R):
This result can be combined with Theorem 4.3 to obtain the following Banach-
Dieudonné like result 7.

7The classical theorem of Banach-Dieudonné (and its many variants) can be seen as providing
su¢ cient conditions on a topological vector space for the natural topology on its dual space to be
a group topology. See [21], [4] for details.
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Theorem 4.5. If X is a completely regular, Lindelöf and sequentially inaccessible
space, then the natural topology on C(X;R) is a group (and vector) topology if and
only if X is infraconsonant.

As we have seen, translations in C(X;R) are, in general, not continuous for the
Isbell topology. They are however continuous if X is prime (that is, has at most
one non-isolated point). More generally,

Proposition 4.6. If X is prime and G is an abelian consonant topological group,
then the Isbell topology on C(X;G) is translation invariant.

Proof. If a family A is compact on X, then for each x 2 X the family Ax :=
OX(x) \ A is compact included in A. Therefore it is enough to consider basic
neighborhoods for the Isbell topology of the form [Ax; U ] where U is an open subset
of G.

Consider f 7! g+f for g 2 C(X;G). Let x 2 X and A be a compact family
included in OX(x) and U is an open subset of G. Let f0 + g 2 [A; U ].

The family D := OG((f0 + g) (A)) is compact in a consonant space G, hence
there is a compact set K � U such that OG(K) � D. Let W = �W be a closed
neighborhood of 0 in G such that K + 3W � U . Then there is A 2 A such that
(f0 + g) (A) � K +W . Furthermore there exists A0 2 A such that A0 � A and
f0(A0) is bounded and (f0 + g) (A0) � K +W .

Let V0 be an element of OX(x) included in A0 such that f0(V0) � f0(x1)+
W and g(V0) � g(x1) +W .

Then there is a �nite subset F of A0 (disjoint from V0) such that A1 :=
V0 [ F 2 A. Then let A1 := A # A1. Of course, f0 + g 2 [A1;K + W ] and
A1 2 �(X).

Then there is n < ! and �nite sets F1; : : : ; Fn such that f0(Fk)� f0(Fk) �
W and g(Fk) � g(Fk) � W for each 1 � k � n, and moreover F1 [ : : : [ Fn = F .
Finally, let D0 := A1 _ V0 and Dk := A1 _ Fk for 1 � k � n. Then A1 =

nT
k=0

Dk.

On the other hand, there exist xk 2 Fk for 1 � k � n, such that

f0 2
n\
k=0

[Dk; f0(xk) +W ];

where x0 := x1. If now f 2
Tn
k=0[Dk; f0(xk) + 2W ] then

f + g 2
n\
k=0

[Dk; f0(xk) + g(xk) + 3W ] � [A1; U ] � [A; U ]:

�

Corollary 4.7. If X is a prime topological space, then C�(X;R) is translation
invariant.

Since, by Corollary 4.2, C�(X;R) is translation invariant if and only if it coincides
with C�(X;R), Corollary 4.7 implies a result [22, Theorem 18] of Jordan that the
Isbell and the �ne Isbell topologies coincide provided that the underlying topology
is prime.
Corollary 4.7 combined with Theorem 3.1 and Corollary 4.2 leads to the following

results.
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Theorem 4.8. If X is prime, then C�(X;R) is a topological group (or topological
vector space) if and only if X is infraconsonant.

Note that if X is as in Example 3.7, then C�(X;R) is invariant by translation
but not a topological group.
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