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Abstract. L. Foged proved that a weakly regular topology on a countable
set is regular. In terms of convergence theory, this means that the topological
re�ection T� of a regular pretopology � on a countable set is regular. It is
proved that this still holds if � is a regular �-compact pretopology. On the other
hand, it is proved that for each n < ! there is a (regular) pretopology � (on a
set of cardinality c) such that (RT )k� > (RT )n� for each k < n and (RT )n� is
a Hausdor¤ compact topology, where R is the re�ector to regular pretopologies.
It is also shown that there exists a regular pretopology of Hausdor¤ RT -order
� !0. Moreover, all these pretopologies have the property that all the points
except one are topological and regular.

1. Introduction

The notion of weak base of a topology � is equivalent to that of a base of a
pretopology, the topologization of which is equal to � . This fact enables reciprocal
transfer and crossbreeding of results between general topology and convergence
theory. As we shall see, the framework of convergence theory will enable much
richer investigations than it might have been possible in topological terms.
If � is a topology on X and B = fB(x) : x 2 Xg is a collection of �lter bases

such that the �lter generated by B(x) is �ner than the neighborhood �lter of x for
every x 2 X, and a subset O of X is open if and only if for every x 2 O there is
B 2 B(x) such that x 2 B � O, then we say that B is a weak base of � [2]. A weak
base is Hausdor¤ if x0 6= x1 implies the existence of B0 2 B(x0) and B1 2 B(x1)
such that B0\B1 = ?. A topology is called weakly regular if it admits a Hausdor¤
weak base B of closed sets.
Under what additional conditions is a weakly regular topology regular?
Nyikos and Vaughan attribute to Foged [17, Theorem 2.4] the following

Theorem 1.1. Each weakly regular topology on a countable set is normal, hence
regular.
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Later we provide several examples to the e¤ect that the assumption of countabil-
ity of the underlying set cannot be dropped. Of course, every (Hausdor¤) compact
topology is normal, and thus, trivially, each weakly regular (Hausdor¤) compact
topology is regular. This suggests a possible extension of the Foged theorem.
Let B be a weak base of a topology � on X. We say that a family Q of subsets of

X is a B-cover if for every x 2 X there is Q 2 Q and B 2 B(x) such that B � Q: A
topological space is compact with respect to a weak base B if for every B-cover there
exists a �nite subfamily, which is a B-cover. If a topological space is compact with
respect to a weak base then it is compact, but not conversely (see the topology T�
of Example 4.6). If a topological space can be represented as a countable union of
B-compact sets, then it is called �-compact with respect to B.

Theorem 1.2. If a topology is weakly regular and �-compact with respect to the
same weak base, then it is normal.

A pretopology � on a set X is a collection of �lters fV�(x) : x 2 Xg such that
x 2 V for each V 2 V�(x) and every x 2 X. In particular, each topology � de�nes a
pretopology via its neighborhood system fN� (x) : x 2 Xg. A pretopology � is �ner
than a pretopology �, or � is coarser than � (in symbols, � � �) if V�(x) � V�(x) for
every x 2 X. The �nest topology among those that are coarser than a pretopology
� is denoted by T�. We shall see that B is a weak base for a topology � on X if
and only if there exists a pretopology � such that T� = � and B(x) is a �lter base
of V�(x) for each x 2 X. In these terms, a topology � is weakly regular whenever
there exists a regular pretopology � with T� = � . Therefore it is convenient to
investigate questions related to weak bases in the framework of pretopologies.
The category of pretopologies is a topological category over the category of sets

(see [1]): there exists a forgetful functor j�j that associates, to every pretopology �,
the underlying set j�j, and to every morphism (that is, continuous map) ' : � ! �
the underlying map j'j : j�j ! j� j. It is known that every concrete endofunctor F
in a topological category1 is determined by its action on objects of the category [1].
A map F on objects of such a category is the restriction of a concrete endofunctor
if and only if (i) jF�j = j�j (ii) � � � implies F� � F� and (iii) f�(F�) �
F (f��) for all pretopologies �; � and � , and for each map f [9], where f�� stands
for the initial pretopology of the pretopology � with respect to f . Therefore, in
our studies, it is enough to consider concrete endofunctors as maps on objects.
In particular, the categories of topologies and regular convergences are concretely
re�ective subcategories of the category of pretopologies. For brevity�s sake we shall
call the topological re�ector the topologizer T (the topological re�ection T� of �
will be called the topologization of �), and the re�ector to regular pretopologies the
regularizer R (the regular re�ection R� of � will be called the regularization of �)
(see also [14], [15]).
If � is a pretopology, then neither RT� need be topological, nor TR� need be

regular.
How long can one iterate alternatively the topologization and the regularization

before getting to a stand?
We will show that for every ordinal  � !0 + 1 there is a regular pretopology �

such that the -th iteration of RT is the �rst to yield a Hausdor¤ regular topology,

1An endofuctor F is concrete if jFf j = jf j for every morphism f of the category.
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which is moreover compact if  < !0. If this is still true for an arbitrary ordinal ,
remains an open question.
It is remarkable that the pretopologies, that we use to prove the iteration results

mentioned above, are topological and regular everywhere with the exception of a
single point. Our construction is based on a concatenation of spaces of the type
f1g[![A, where A is a maximal almost disjoint family on ! admitting a Simon�s
partition, on which a pretopology is constructed with the aid of that partition.

2. Pretopologies, regularity, topologicity

Families F ;H (of subsets of a given set) mesh (F#H) if F \H 6= ? for every
F 2 F and for each H 2 H. The operation# is related to the notion of the grill H#

of a family H, which was de�ned by Choquet [3] as H# =
T
H2HfG : G\H 6= ?g.

A pretopology � is de�ned by assigning a vicinity �lter V�(x) to every x 2 j�j so
that x 2 V for each V 2 V�(x). The associated convergence of �lters is de�ned by

x 2 lim� F , V�(x) � F :

A pretopology � is �ner than a pretopology � (in symbols, � � �) if they are de�ned
on the same set X and if V�(x) � V�(x) for each x 2 X. A pretopology is Hausdor¤
if for every pair of distinct elements, the corresponding vicinity �lters do not mesh.
A subset A of j�j is compact (respectively, cover-compact) if for every family P of
subsets of X such that for each x 2 A there is P 2 P \ V�(x), there exists a �nite
subfamily P0 which is a set-theoretic cover of j�j (respectively, such that for each
x 2 A there is P 2 P0\V�(x)). A cover-compact set is compact, but not conversely
(see e.g., [4, Example 8.4]); however if � is a topology then the converse also holds.
We notice that if B is a weak base of a topology, then a set is compact with

respect to B if and only if it is cover-compact for the pretopology determined by B.
An element x belongs to the adherence adh�H of a set H whenever H 2 V�(x)#.

If F is a �lter on j�j, then the symbol adh\� F denotes the �lter generated by
fadh� F : F 2 Fg.
A pretopology � is regular if (2)

(2.1) V�(x) � adh\� V�(x)

for each x 2 j�j. An element x of j�j is said to be regular [5] if (2.1) holds. Of course,
a pretopology is regular if and only if all its elements are regular. The category
of regular pretopologies is a concretely re�ective subcategory of the category of
pretopologies. In particular, the corresponding re�ector R, called the regularizer,
associates with every pretopology � the �nest regular pretopology R� that is coarser
than �.
A subset O of j�j is open if O 2 V�(x) for every x 2 O. A set N is a neighborhood

of x if there exists an open set O such that x 2 O � N . The family N�(x) of
neighborhoods of x is a �lter. A set is closed if its complement is open. The least
closed set that includes a set A is called the closure of A and is denoted by cl� A.
It is straightforward that x 2 cl� A if and only if A 2 N�(x)#.
The family of all open sets of a pretopology � ful�lls all the axioms of open sets

of a topology. The corresponding topology is denoted by T�, where the topologizer

2This de�nition is that of Fischer [10]. It is equivalent to that of Grimeisen [12] for pseudo-
topologies, a fortiori for pretopologies.
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T is the re�ector to the concretely re�ective subcategory of topologies. An element
x of a pretopological space (X; �) is topological if N�(x) = V�(x).
If W(y) is a family of subsets of X for every y 2 Y , and if F is a family of

subsets of Y , then the contour of W along F is de�ned by3

(2.2) W(F) =
[
F2F

\
y2F

W(y):

An element of x 2 j�j is called topological if V�(x) � V�(V�(x)) [6]. Clearly a
pretopology � is a topology if and only if every x 2 j�j is topological.
Regular topologies form a concretely re�ective subcategory of the category of

pretopologies. It turned out [5, Proposition 4.4] that each regular pretopology � is
topologically regular, that is, such that

V�(x) � cl\� V�(x)

for each x 2 j�j, where cl\� F denotes the �lter generated by fcl� F : F 2 Fg. How-
ever, neither RT nor TR is the re�ector to the subcategory of regular topologies.
The compositions of two concrete re�ectors R; T are contractive functors (4), but
neither of them is idempotent. If F is a concrete contractive functor of a topological
category, then its iterations on an object � are de�ned by induction F 0� = � and
for  > 0,

F � = F (
^

�<
F��):

Because each set is well-ordered (in ZFC), for every � there is the least  (called
the F -order of �) such that F � = F +1�. If  is the F -order of � and moreover
F� is Hausdor¤ (compact), then we shall say that � is of Hausdor¤ F -order 
(respectively, compact F -order ).
In particular, we can iterate RT (and TR) and for each pretopology there is the

least  such that (RT )� (respectively (RT )�) is a regular topology. Therefore
the RT -order and TR-order of a pretopology are well-de�ned.
The case of F being a composition of two contractive functors leads to an ad-

ditional subtlety in the de�nition of F -order. If for example, the RT -order of � is
n < !, then (RT )k�1� > T (RT )k�1� > (RT )k� for each 0 < k < n, for otherwise
either (RT )k�1� would be a (regular) topology (and thus (RT )k�1� = (RT )�� for
each � � k) or T (RT )k�1 would be regular (and a topology) and thus T (RT )k�1� =
(RT )�� for each � � k. However it may happen either that T (RT )n�1� > (RT )n�
or that T (RT )n�1� = (RT )n�. In the latter case, we shall say that the RT -order
of � is degenerate.

3. Interplay between regularity and topologicity

If B is a Hausdor¤ weak base for a topology � on X, and for each x 2 X, we
denote by V�(x) the �lter generated by B(x), then we have de�ned a pretopology
� such that T� = � . If B consists of closed sets, then � is Hausdor¤ topologically
regular (equivalently, regular). A subset of X is �-compact if and only if it is
B-compact.
In these terms, having in mind [5, Proposition 4.4], Theorem 1.1 can be refor-

mulated as follows:

3It seems that this notion was �rst introduced by Kowalsky for �lters in [16] under the name
of diagonal operation.

4A concrete functor F is contractive if F� � �.
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Theorem 3.1. The topologization of a Hausdor¤ regular pretopology on a countable
set is normal (hence regular).

As we have said, the assumption in Theorem 3.1 that the underlying set is
countable cannot be dropped. In Example 4.6 we construct a regular pretopology
�, the topologization of which is Hausdor¤ but not regular. This pretopology is
de�ned on f1g[![A, where A is an arbitrary maximal almost disjoint family on
!. Recall that a is the least cardinal number, for which there is a maximal almost
disjoint family of that cardinality.
Therefore,

Theorem 3.2. There exists a pretopology � on a set of cardinality a such that RT�
is Hausdor¤, and

R� = � > T� > RT�:

In other terms,

Corollary 3.3. There exists a Hausdor¤, non-regular, weakly regular topology on
a set of cardinality a.

The class of pretopologies, for which the regularity implies the regularity of their
topologization is larger than those with countable underlying set. For example,

Theorem 3.4. Each Hausdor¤ cover-compact regular pretopology � is topological,
hence T� = � is normal (thus regular).

Actually, this is a special case of a more general fact (due to M. P. Kac [13]; see
also [11, 3.17.9]) that every Hausdor¤compact regular pseudotopology is a topology.
(5) Of course, each Hausdor¤ compact topology is normal, a fortiori regular. But
the assumption of Hausdor¤ness in Theorem 3.4 regards a pretopology, and not its
topologization. In terms of weak bases, Theorem 3.4 becomes

Corollary 3.5. If B is a Hausdor¤ weak base of closed subsets of a topology that
is compact with respect to B, then B is a base of the topology.

Here is a common generalization of Theorems 3.1 and 3.4.

Theorem 3.6. If � is a Hausdor¤ regular �-cover-compact pretopology, then T�
is normal.

Proof. Let X =
S
0�n<!Kn, where each Kn is a cover-compact set repeated in�n-

itely many times. Let A0; B0 be two closed disjoint sets. Suppose that we have con-
structed ascending sequences of closed setsA0; A1; : : : ; An; : : : andB0; B1; : : : ; Bn; : : :
such that An \Bn = ?.
If Kn \ An 6= ? then let clQn = Qn 2 V(Kn \ An) be disjoint from Bn; set

An+1 = An [ Qn. Otherwise An+1 = An. If Kn \ Bn 6= ? then let clRn = Rn 2
V(Kn \ Bn) be disjoint from An+1; set Bn+1 = Bn [ Rn. Otherwise Bn+1 = Bn.
Let A =

S
n<! An and B =

S
n<! Bn. Then A;B are disjoint. To show that A

is open, let x 2 A. Then there exists n < ! such that x 2 An. Let k � n be
the �rst integer such that x 2 An \ Kk. Thus Qk 2 V(Kk \ Ak) � V(x) and so
A � Ak+1 2 V(x): It follows that A is open. Likewise B is open. �

5A convergence is a pseudotopology provided that x 2 limF if and only if x 2 limU for every
ultra�lter U � F .
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In the language of weak bases, Theorem 3.6 becomes Theorem 1.2.
The topologization of a �-cover-compact pretopology is �-compact. We do not

know if one can weaken the assumption of Theorem 3.6 to the �-compactness of
T�. In other words, is a Hausdor¤ �-compact weakly regular topology normal
(regular)?
In contrast,

Proposition 3.7. There exists a topology � on a countable set such that � > R� >
TR� and TR� is Hausdor¤ and regular.

This fact follows from Example 3.9 below. Indeed, the phenomenon is somewhat
more general.
We denote by F _ G the supremum and by F ^ G the in�mum of two �lters F

and G. If G is the principal �lter generated by G, then we abridge F _G and F ^G
respectively.
Let fXv : v 2 V g be an in�nite family of disjoint in�nite sets such that v 2 Xv

for each v 2 V and let F be a free �lter on V . Consider a pretopology �v on Xv for
each v 2 V . Then the topologizing module is a pretopology � = �(F ; �v : v 2 V )
on X := f1g [

S
v2V Xv such that its restriction to

S
v2V Xv is the coproductL

v2V �v and V� (1) is generated by F ^ f1g.

Lemma 3.8. If � = �(F ; �v : v 2 V ) is a topologizing module such that �v > R�v
and R�v is a Hausdor¤ regular topology for each v 2 V , then � > R� > TR� and
TR� is a Hausdor¤ regular topology.

Proof. As � restricted to V is discrete, V� (1) has a base of � -closed sets, that is,
V� (1) = VR� (1). Therefore R�(F ; �v : v 2 V ) = �(F ;R�v : v 2 V ) and is strictly
coarser than � . All the elements of X with the exception of 1 are topological
in R� . Therefore VTR� (1) = VR� (V� (1)), the contour of VR� = VTR� along
V� (1) = VR� (1). �

Example 3.9. Let W and Xw be countably in�nite sets for each w 2W . Let W be
the co�nite �lter of W and X (w) be the co�nite �lter of Xw for each w 2 W . We
de�ne a pretopology � on the disjoint union X := f1g [

S
w2W Xw so that V�(w)

is generated by X (w)^fwg and V�(1) is generated by X (W)^f1g. All the other
elements are isolated. This is a topology. All the points except 1 are regular, and
VR�(1) = V�(1) ^ W. By applying � = �(F ; �v : v 2 V ) with the co�nite �lter
F of a countably in�nite set V , with Xv being a copy of X and �v a copy of � for
each v 2 V , we are in the assumptions of Lemma 3.8. Of course, the underlying
set of � is countably in�nite.

As we shall see below, similar constructions with the inverted role of T and
R give rise to regular pretopologies, the topologizations of which are necessarily
regular.

Theorem 3.10. Let �v be a regular pretopology on Xv and 1v 2 Xv so that all
the elements of Xv r f1vg are topological and T�v is a Hausdor¤ regular topology
for each v 2 V . Let � be a regular Hausdor¤ pretopology on a disjoint union
X := f1g [

S
v2V Xv such that �jSv2V Xv

=
L

v2V �v. Then T� is regular.

Proof. Suppose that there is an ultra�lter U#cl\� VT�(1) and such that U does
not converge to 1 in T�. It follows that f1v : v 2 V g =2 U . As U#cl\� VT�(1)
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is equivalent to VT�(U)#VT�(1) and all the elements of
S
fXv r f1vg : v 2 V g

are topological, we infer that V�(U)#VT�(1), that is, V�(U)#VT�(V�(1)), because
VT�(V�(1)) = VT�(1). It follows that cl\� V�(U)#V�(1), hence V�(U)#V�(1), be-
cause the elements of

S
fXv r f1vg : v 2 V g are topological. Therefore U#V�(V�(1))

and thus U � VT�(1), contrary to the assumption. �

4. Modules

To construct pretopologies of prescribed (�nite) RT -order, we will use some
modi�cations of the Mrówka-Isbell topology. If A is an in�nite subset of !, then
E(A) denotes the co�nite �lter of A � !, that is, E(A) is the �lter generated by the
free sequence of the elements of A. Recall that a family A of in�nite subsets of ! is
almost disjoint (AD) if any two of its elements have �nite intersection. If A is an
AD family, then the Mrówka-Isbell topology � = �A is de�ned on a disjoint union
![A so that N� (A) := ffAg [ E : E 2 E(A)g is the neighborhood �lter of A (seen
as an element of A) for every A 2 A, and that all the elements of ! are isolated.
The topology �A is locally compact and Hausdor¤ (because A is almost disjoint).
The Alexandrov compacti�cation of �A (on a disjoint union X := ! [A[ f1g) is
called the Franklin compact (of A) [18].
We shall consider a disjoint union X := ! [ A [ f1g, where A is a maximal

almost disjoint (MAD) on !, and a free �lter F on X such that A 2 F . We call a
module of F (over A) the �nest pretopology � = �(A;F) such that E(A) converges
to A for every A 2 A, and F converges to 1. Consequently, V�(1) = f1g ^ F
and V�(A) = fAg ^ E(A). Of course, the restriction to ! [ A of a module is equal
to � .
Each module is a regular pretopology. More precisely, each x 2 Xrf1g is regu-

lar and topological for (RT )� �; T (RT )� �; (TR)� � and R (TR)� � for each ordinal
�, because the vicinity �lters of such an x remain invariant under regularization
and topologization. All these pretopologies are Hausdor¤.
Notice that VT�(A) = V�(A) for every A 2 A, and

VT�(1) = V�(1) ^ E(F) = f1g ^ F ^ E(F);

where the contour E(F) is de�ned by (2.2), so that � > T�. The regularization
RT� of T� is described by

(4.1) VRT�(1) = cl\T� (VT�(1)) = cl
\
� (V�(1) ^ E(F)) = V�(1) ^ cl\� E(F):

Whether RT� is strictly coarser than T� or not, depends on the module. Conse-
quently the topologization (of a module) can be described with the aid of contours.
It is often insightful to perceive this operation in terms of the µCech-Stone com-

pacti�cation of !. The (free) Stone transform �� of the contour E(F) ful�lls

(4.2) ��(E(F)) =
\

F2F
cl�

�[
A2F

��A
�
;

hence is the upper Kuratowski limit of F . The residual �lter (on !) of an AD
family A is the contour E(FA) of the co�nite �lter FA of A. In the case of FA,
(4.2) becomes

�� (E(FA)) = cl�
[
f��A : A 2 Ag n

[
f��A : A 2 Ag :

If moreover A is maximal, then �� (E(FA)) = ��! n
S
f��A : A 2 Ag :
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The regularization of this special type of pretopologies can be described in terms
of a set-theoretic operation adh\A. If H is a �lter on !, then adh\AH is the �lter
(on A) generated by

fadhAH : H 2 Hg ;
where adhAH = fA 2 A : card (A \H) =1g. Notice that if � = �(A;F), then

VRT�(1) = V�(1) ^ E(F) ^ adh\A E(F):

Of course, if F0;F1 are �lters on A then F0 � F1 implies that E(F0) � E(F1),
and H0 � H1 implies that adh

\
AH0 � adh\AH1. Therefore the operation

(4.3) AdhA F := adh\A E(F)

is isotone. Finally,

(4.4) F � adh\A E(F):

Indeed if B 2 adh\A(E(F)), that is, there is F 2 F and for each A 2 F , there
is EA 2 E(A) such that

�
D 2 A : card

�
D \

S
A2F EA

�
=1

	
� B: Hence F � B,

and thus, (4.4) holds.
By (4.4) AdhA is contractive, thus can be iterated till it becomes stationary.

How long does this iteration last for a given free �lter F on A? This is another way
of asking about the RT -order of a certain pretopology constructed with the aid of
A and of F .

Lemma 4.1. If FA is the co�nite �lter of a MAD family A, then FA = adh\A E(FA).

Proof. If A0 is a �nite subset of A, then
S
D2A0

D\A is �nite for each A 2 ArA0,
hence there is W 2 E(FA) disjoint from

S
D2A0

D and thus A0 \ adh\AW = ?
showing that FA � adh\A E(FA). �

This means that the co�nite �lter of A is a �xed point of AdhA.

Corollary 4.2. If F is a free �lter on a MAD family A, then Adh�A F is free for
each ordinal �.

Proof. A �lter F on A is free whenever it is �ner than the co�nite �lter of A, that
is, F � FA: Hence AdhA F � AdhA FA = FA by Lemma 4.1, that is, AdhA F is
free. �

Corollary 4.3. For each module � = �(A;F) and each ordinal �, the pretopology
(RT )�� is Hausdor¤.

Example 4.4. Let FA be the co�nite �lter of a MAD family A on !.6 Its topol-
ogization T� is homeomorphic to the Alexandrov compacti�cation of the Mrówka-
Isbell topology. Therefore the RT -order of the corresponding module is 1, and is
degenerate in the sense that RT� = T�. In fact, each free ultra�lter on ![A[f1g
is either �ner than FA, �ner than the co�nite �lter E(A) of A for some A 2 A
or �ner than the residual �lter E(FA). Therefore T� is a (Hausdor¤ ) compact
topology, and in particular, is regular.

6Then the module � of F is a Fréchet �1 pretopology, because all the vicinity �lters of non-
isolated elements are co�nite �lters. It follows (see e.g., [7]) that T� is a sequential topology.
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Remark 4.5. Of course, card (A \H) =1 if and only if ��A \ ��H 6= ?. Con-
sequently, the contour E(adh\AH) is a �lter on !, and its Stone transform is the
upper Kuratowski limit\

H2H
cl�
[
f��A : ��A \ ��H 6= ?g :

Therefore ��H � ��
�
E(adh\AH)

�
, because ��H =

T
H2H �

�H, that is, E(adh\AH) �
H.
Example 4.6. If A is a MAD family and A0 is a countably in�nite subfamily of
A, and let A1 := A nA0. Denote by F the co�nite �lter of A0. We notice that for
each F 2 F and every choice EA 2 E(A) with A 2 F , there exists H �

S
A2F EA

such that H \ EA is a singleton for each A 2 A0. Because A is maximal, there
exists AH 2 A such that H \ AH is in�nite, hence AH 2 A1, and thus AH 2
cl�
�S

A2F EA
�
, which means that cl\� E(F) meshes with A1. Consequently, T� >

RT�. Actually, the restriction to A1 of every element of cl\� E(F) is uncountable,
because the restriction of A to each B 2 E(F)

A _1 B := fA \B : card (A \B) =1; A 2 Ag
is in�nite and maximal almost disjoint. The pretopology RT� is Hausdor¤, because
the restriction cl\� E(F) _1 A1 of cl\� E(F) to A1 is free. Actually it is easy to see
that cl\� E(F) _1 A1 is �ner than the cocountable �lter of A1. Indeed, if B is a
countable subfamily of A1 then for each A 2 A0 [ B there is EA 2 E(A) so that
fEA : A 2 A0 [ Bg consists of disjoint sets. Therefore cl�

�S
A2F EA

�
is disjoint

from B.
It is essential for the precision of estimates of the RT -order of pretopologies

constructed later, to �nd a module � of non-degenerate (Hausdor¤) RT -order 1,
that is, such that � > T� > RT� = TRT� and the latter topology is Hausdor¤.
In [18] P. Simon showed that there exists a maximal almost disjoint family A on

! that can be split into two subfamilies A0;A1 so that, if S is an in�nite subset of
! such that Aj _1 S is maximal, then Aj _1 S is �nite (for j 2 f0; 1g). We call
such A0;A1 a Simon�s partition of A.
Theorem 4.7. Let A = A0 [A1 be a Simon�s partition. If F0 is the co�nite �lter
of A0, then the module �(A;F0) ful�lls � > T� > RT� = TRT�.
Proof. The main point is that the contours of the residual �lters of A0;A1 and A
are all equal. Indeed, if H is an in�nite subset of !, then A0 _1 H is in�nite if
and only if A1 _1 H is in�nite, because if Aj _1 H is in�nite (for j = 0; 1), then
it is not maximal, but A _1 H is maximal. This means that the boundaries ofS
A2A0

��A and
S
A2A1

��A are equal, that is, the residual �lters of the respective
co�nite �lters F0 and F1 are equal. Since F0 ^ F1 is the co�nite contour F of A,
we have E(F0) = E(F). As a result, adh\A E(F0) is the co�nite �lter of A so that
RT� is homeomorphic to the Alexandrov compacti�cation of the Mrówka-Isbell
topology. �
What is the RT -order of the module �(A;F) for a given �lter F on a MAD

family A? What is the supremum of the RT -orders of all the modules of a given
MAD family A?
As a by-product of our main quest, we shall provide some elements of reply. A

systematic study of the questions above deserves a separate paper.
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5. Concatenation of modules

Are there Hausdor¤ regular pretopologies of every (Hausdor¤) RT -order? What
are the least cardinalities of the underlying sets of such pretopologies? In a prelim-
inary version of this paper [8] we believed to have answered positively to the (�rst)
question. The proof however contained a gap. We know now that methods based
on well-capped trees are not adequate in a construction of a regular pretopology,
the topologization of which is not regular. Nevertheless, by using other methods
we prove in this section that there exist Hausdor¤ regular pretopologies (with the
underlying sets of cardinality not greater than c) of every RT -order less than or
equal to !0 + 1. Moreover, for each  � !0 there is a module of RT -order .

Theorem 5.1. For every cardinal n < !0 there is a regular pretopology � (on a
set of cardinality not greater than c) of non-degenerate RT -order n and such that
(RT )n� is a Hausdor¤ compact topology.

Proof. Let A = A0[A1 be a Simon�s partition of a maximal almost disjoint family
on !. Let fWk : k < !g be a family of disjoint countably in�nite sets, and let
fk : ! ! Wk be a bijection for every k < !. Then fk (A) := ffk(A) : A 2 Ag is a
MAD family on Wk. If  � ! let X be a disjoint union

(5.1) X := f1g [
[

k<
Wk [

[
k<

fk(A):

For each k < , the subset Wk [ fk(A) of X is endowed with the Mrówka-Isbell
topology, that is, for each A 2 A the co�nite �lter E(fk(A)) converges to fk(A),
and all the elements of Wk are isolated. We de�ne a pretopology � by identifying
fk�1(A1) with fk(A1) for each odd 0 < k <  and fk�1(A0) with fk(A0) for each
even 0 < k < , and by setting V� (1) = f1g ^F0, where F0 is the co�nite �lter
on f0(A0).
For n < !0 the pretopology �n is regular of TR-order n. In fact, if n = 1 then

�1 is the module of Theorem 4.7 and RT�1 is a Hausdor¤ compact topology that
di¤ers from T�1 only at 1, namely VRT�1(1) = VT�1(1) ^ F1 where F1 is the
co�nite �lter of f0(A1). Proceeding by induction, we assume that 0 < n < ! and
�n satis�es the requirements of the theorem for n = n so that

V(RT )n�n(1) = VT (RT )n�1�n(1) ^ Fn;

where Fn is the co�nite �lter of fn�1(Aj) for j = 1 if n is odd and j = 0 if n is
even. As �n is the restriction of �n+1 to Xn, by Theorem 4.7 with A0 replaced
by fn(A0) if n is even and by fn(A1) if n is odd, we see that VT (RT )n�n+1(1) =
V(RT )n�n+1(1) ^ E(Fn) and V(RT )n+1�n+1(1) = VT (RT )n�n+1(1) ^ Fn+1 where
Fn+1 is the co�nite �lter of fn(Aj), where j = 1 if n is even and j = 0 if n is odd.
Clearly (RT )n+1 �n+1 is a Hausdor¤ compact topology. �

Remark 5.2. Consider the pretopology � = �!0 from the proof of Theorem 5.1 on
X!0 . The vicinity �lter of 1 in the pretopological in�mum

V
n<!0

(RT )n� is the
intersection of all Fn and of all E(Fn) for n < !0. Hence � is a regular topology.

Corollary 5.3. There exists a regular pretopology (on a set of cardinality not
greater than c) of Hausdor¤ RT -order !0.

Corollary 5.4. For every cardinal n < !0 there is a topology (on a set of cardinality
not greater than c) of Hausdor¤ compact TR-order n.
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To see this, it is enough to put � = T�, where � ful�lls the conditions of Theorem
5.1.
Actually, the proof of Theorem 5.1 enables us to replace an unspeci�ed pretopol-

ogy ful�lling the conditions of Theorem 5.1 by a module.

Theorem 5.5. For every n < !0 there is a module � such that (RT )n� is a
Hausdor¤ compact topology and (RT )k� > T (RT )k� > (RT )n� for each k < n.

Proof. Let Xn be given by (5.1), and let B be the family of subsets of W :=S
k<nWk consisting of all the elements of f0(A0); fn�1(Aj) (where j = 1 if n is odd

and j = 0 if n is even) and of the unions fk(A) [ fk+1(A) where 0 � k < n and
A 2 A1 if k is even and A 2 A0 if k is odd.
The so de�ned B is a MAD family on W . Therefore the pretopology �n on Xn

de�ned in the proof of Theorem 5.1 is in fact the module of F0 (the co�nite �lter
of f0(A0) over B). �

Theorem 5.6. There is a module of Hausdor¤ RT -order greater than or equal to
!0.

Proof. Let X! be given by (5.1), and let B be the family of subsets of W :=S
k<!Wk consisting of all the elements of f0(A0) and of the unions fk(A)[fk+1(A)

where 0 � k < n and A 2 A1 if k is even and A 2 A0 if k is odd. Of course, B
is almost disjoint but not maximal. Let A1 be a family on W such that B [
A1 is MAD. Let � be the module of the co�nite �lter of f0(A0) over B on W .
Then (RT )n � > T (RT )

n
� > (RT )

n+1
� for each n < !. The in�mum �1 :=V

n<!0
(RT )n� (in the lattice of pretopologies) turns out to be topological. This

follows from the equality

E(
^

n<!0
Fn) =

^
n<!0

E(Fn):

In fact, if B 2
V
n<!0

E(Fn) then for each n < ! there is Fn 2 Fn such that
B 2 E(A) for each A 2 Fn. In other words, there is F =

S
n<! Fn 2

V
n<!0

Fn
such that B 2 E(A) for each A 2 F , that is, B 2 E(

V
n<!0

Fn). The converse is
always true. We shall see that �1 > R�1. Indeed, if wk 2 Wk for each k < !,
then fwk : k < !g has in�nite intersection with an element A of A1. It follows
that the trace adh\A1

N�1(1) of adh
\
�1
N�1(1) on A1 is non-degenerate. We

have proved that (RT )n� > (RT )!� for each n < !. �

Actually, it can be shown that adh\A1
N�1(1) is �ner than the cocountable

�lter of B [A1. The construction in the proof above enables us to make one more
step.

Proposition 5.7. There is a module of Hausdor¤ RT -order equal to or greater
than !0 + 1.

Proof. Take the "mirror image" with respect to A1 of the module from the proof
of Theorem 5.6, that is, let h be a one-to-one map de�ned on W , and consider a
disjoint union

X := f1g [W [ B [ A1 [ h(B) [ h(W ):
We de�ne the following pretopology � on X: For each B 2 B, let V�(B) := fBg ^
E(B) and V�(h (B)) := fh (B)g ^ E(h (B)). For every A 2 A1 we set V�(A) :=
fAg ^ E(A [ h(A)) and V�(1) := f1g ^ f0(A0). As the so de�ned family B [
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A1 [ h(B) on W [ h(W ) is MAD, � is in fact a module. From the proof of
Theorem 5.6, it follows that H := adh\A1

N�1(1) converges to1 for (RT )!0 � but
not in T

�V
n<!0

(RT )n�
�
=
V
n<!0

(RT )n�. Therefore, E(H) has non-degenerate
trace on h(W ) and converges to 1 for T (RT )!0 � but not in (RT )!0 �, so that
(RT )

!0 � > (RT )
!0+1 �. �
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