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Abstract. Compactoid and compact families generalize both conver-
gent filters and compact sets. This concept turned out to be useful in
various quests, like Scott topologies, triquotient maps and extensions of
the Choquet active boundary theorem.

The completeness number of a family in a convergence space is the
least cardinality of collections of covers for which the family becomes
complete. 0-completeness amounts to compactness, finite completeness
to relative local compactness and countable completeness to Čech com-
pleteness. Countably conditional countable completeness amounts to
pseudocompleteness of Oxtoby. Conversely, each completeness class of
families can be represented as a class of conditionally compactoid fami-
lies. In this framework, the theorem of Tikhonov for compactoid filters
becomes a special case of the theorem on the completeness number of
products.

A characterization of completeness in terms of non-adherent filters
not only provides a unified language for convergence and completeness,
but also clarifies preservation mechanisms of completeness number under
various operations.

1. Introduction

Completeness of a convergence is a notion relative to that of fundamental
(or Cauchy) filter. An abstract approach to completeness consists in declar-
ing a class C of filters to be Cauchy filters whenever if F ∈ C and F ⊂ G
then G ∈ C, if F ,G ∈ C then F ∩ G ∈ C and if all principal ultrafilters
belong to C, was adopted in the book [13] of Eva Lowen-Colebunders.

Two types of completeness of topological spaces have been mainly con-
sidered in the literature. The first qualifies a topology as complete if each
fundamental filter is convergent (for example, metric completeness), the sec-
ond, if each fundamental filter is adherent (for instance, Čech completeness).
In some cases the two notions coincide; this happens, for example, in metric
spaces where fundamental filters are defined as those that contain elements
of arbitrarily small diameter.

In this paper, I shall study the second type of completeness in a broader
framework of convergence spaces. Traditionally, fundamental filters have
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been defined in terms of collections of covers. In [4] I proposed to relate
fundamental filters to collections of non-adherent families, a non-adherent
family being a dual concept of that of cover. An advantage of this dual
approach is to make evident the reasons of preservation of completeness
under several types operations.

A preconvergence ξ on a set X is a relation between F (X) (the set of
filters on X) and X, denoted by x ∈ limξ F , such that F ⊂ G implies that

limξ F ⊂ limξ G. A preconvergence ξ is a convergence if x ∈ limξ {x}↑ ,
where {x}↑ := {A ⊂ X : x ∈ A} is the principal ultrafilter of x. Then we say
that F converges to x, equivalently, x is a limit of F (1,2). We denote by |ξ|
the underlying set of ξ.

We say that A meshes B
A#B

if A ∩ B 6= ∅. This simple but useful relation is of course symmetric. It
extends to families of sets: A#B means that A#B for each A ∈ A and
B ∈ B. If A = {A} then we write A#B to abridge {A}#B. The grill A#

of a family of subsets of a set X was defined by G. Choquet in [1] as

A# := {H ⊂ X : H#A} .
The adherence of a family H of subsets of a convergence space is defined

by

adhξH :=
⋃
F#H

limξ F .

We say that a filter H on |ξ| is adherent if adhξH 6= ∅, and non-adherent
if adhξH = ∅.

A family P of subsets of a convergence space X is said to be a cover of a
subset A of X

(1.1) P �ξ A
provided that F ∩ P 6= ∅ (3) for each filter F such that A# limξ F (4).

2. Compactoid families

Compact families constitute a common generalization of compact sets and
convergent filters. The concept of compact filters was studied in [11],[7] and
an akin notion was applied in [18], but already Urysohn considered what
can be called sequentially compact sequences [16]. In [8] it became clear
that one needs to extend the concept of compactness to arbitrary families
of sets in order to characterize open sets for the Scott convergence on the
hyperspace of open sets (dually, the upper Kuratowski convergence on the

1Some authors give additional conditions, like lim (F ∩ G) ⊂ limF ∩ limG. I call such
convergences prototopologies.

2If B is a filter-base on X, then we write x ∈ limB whenever x ∈ limB↑, where
B↑ := {F ⊂ X : ∃ (B ∈ B) B ⊂ F} .

3That is, there is P ∈ P such that P ∈ F .
4In particular, P is a cover of a topological space X if and only if

⋃
P∈P intP ⊃ X.
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hyperspace of closed sets). Later it turned out that compact families are
essential in very useful characterizations of triquotient maps [15].

Let ξ be a convergence on a set X and let A and B be families of subsets
of X. We say that A is ξ-compact at B if for every filter H on X,

(2.1) H#A =⇒ adhξH ∈ B#.

In particular, A is compactoid whenever A is compact at X, A is com-
pact if it is compact at itself. It was observed in [3] that compactness is a
pseudotopological notion, that is, a family is ξ-compact (at another family)
if and only if it is Sξ-compact, where Sξ stands for the pseudotopological
modification of ξ. A fundamental fact about compactness is the following
generalization of the Tikhonov theorem. Let J be an non-empty set and let
ξj be a convergence on a non-empty set Xj for each j ∈ J (5).

Theorem 2.1 (Tikhonov). A filter F is
∏
j∈J ξj-compactoid if and only

if pj [F ] is ξj-compactoid for each j ∈ J .

In fact, Theorem 2.1 is a consequence of the commutation of the pseu-
dotopological modifier with arbitrary products applied to the characteristic
preconvergences ([5]).

If H is a class of filters (possibly depending on the convergence), then
H (ξ) denotes the set of filters on |ξ| belonging to H. In particular, if H is
independent (of the convergence), that is, whenever H (ξ) = H (ζ) provided
that |ξ| = |ζ| , then we write HX rather than H (ξ) , where X := |ξ| . Often
it is clear from the context which the underlying set of a filter H and which
convergence on that set is considered, so that it is enough to write H ∈ H
to determine the set of studied filters.

If H is a class of filters, then a family A is said to be H-compact at B if
(2.1) holds for every filter H ∈ HX. In particular, for the class F1 (of count-
ably based filters), F1-compactness corresponds to countable compactness,
F1∧ (the class of countably deep filters) F1∧-compactness corresponds to
Lindelöf property, that of F0, the class of principal filters, F1∧-compactness
is finite compactness, that is trivial in the case of sets, but is interesting
and useful for families (see, e.g., [2]). As F stands for the class of all fil-
ters, F-compactness is equivalent to compactness. Incidentally, sequential
ξ-compactness is equivalent to countable Seq ξ-compactness, where Seq ξ is
the sequential modification of ξ.

Continuous maps preserve H-compactness for the classes H of filters ful-
filling

H ∈ H (τ) =⇒ f− [H] ∈ H (ξ)

for f ∈ C (ξ, τ) . This is the case of (idependent) classes F,F0,F1 and F1∧.
In general, H-compactness is not preserved by products as in Theorem

2.1. This is a well known fact already in very special cases, for instance, the

5If A is a family of subsets of X and f : X → Y, then f [A] := {f (A) : A ∈ A} . If Xj
is a set, then pk :

∏
j∈J Xj → Xk is the projection on the k-th component.
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product of two countably compact topologies need not be countably compact
(see, e.g., [9, Example 3.10.19]). In fact, there is an intimate relation between
H-compactness and H-adherence-determined convergences, that is, the fixed
points of the H-adherence modifier defined by

limAHξ F :=
⋂

H3H#F
adhξH.

The H-adherence modifier AH associates to each (pre)convergence ξ, the
finest H-adherence-determined (pre)convergence AHξ (6).

For example, F-adherence-determined convergences coincide with pseu-
dotopologies, F1-adherence-determined with paratopologies, F0-adherence-
determined with pretopologies. It turns out that H-compactness is preserved
by a product whenever AH commutes with that product.

A family A of subsets of X is said to be isotone if B ⊃ A ∈ A implies
B ∈ A. Let us denote by κ (H) the set of H-compact isotone families.

Theorem 2.2. The class of all H-compact isotone families on a conver-
gence space X fulfills the axioms of open sets of a topology on the hyperspace
2X , that is,

∅, 2X ∈ κ (H) ,(2.2)

A ⊂ κ (H) =⇒
⋃
A ∈ κ (H) ,(2.3)

A ⊂ κ (H) , cardA <∞ =⇒
⋂
A ∈ κ (H) .(2.4)

Proof. Let H be an arbitrary non-empty class of filters and let ξ be a
convergence. If ∅ is the empty family of subsets of |ξ| , then adhξH ∈ ∅#

is true for every filter H ∈ H (since there is no A ∈ ∅, the condition

A ∩ adhξH 6= ∅ is true for each A ∈ ∅). On the other hand, since ∅ ∈ 2|ξ|,

no filter H meshes with 2|ξ|, thus the condition is emptily fulfilled.
If H ∈ H is a filter such that H#

⋃
i∈I Ai, then H#Ai for each i ∈ I

so that adhξH ∈ A#
i , because Ai is H-compact for each i ∈ I, that is,

adhξH ∈
(⋃

i∈I Ai
)#

.

Suppose that adhξH /∈
(⋂

i∈I Ai
)#

=
⋃
i∈I A

#
i (7) for some H ∈ H,that

is, adhξH /∈ A#
i for each i ∈ I. Then for each i ∈ I there is Hi ∈ H with

Hi /∈ A#
i . As I is finite,

⋂
i∈I Hi ∈ H and

⋂
i∈I Hi /∈

⋃
i∈I A

#
i =

(⋂
i∈I Ai

)#
,

we infer that H does not mesh
⋂
i∈I Ai.

Often one considers the restriction

κO (H) := {A ∩ O : A ∈ κ (H)} ,

where O is a family of open sets. A subfamily A of O is called openly isotone
if A ∈ A and A ⊂ O ∈ O, then O ∈ A.

6AH is a concrete reflector under some natural conditions on a class H.
7This equality holds for isotone families (see, e.g., [6, (2.1)]).
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Corollary 2.3. The class of all H-compact openly isotone families of
open sets fulfills the axioms of open sets of a topology on the hyperspace of
all open sets.

In particular, if K ⊂ X and OX (K) stands for the family of open sets
including K, then OX (K) is a compact family if and only if K is a compact
set. Therefore for each family L of compact sets,

⋃
K∈LOX (K) is a compact

family. A topological space X is called consonant if each openly isotone
compact family is of this form [7] (8).

3. Completeness

If ξ is a convergence and P is a collection of families of subsets of |ξ|, then
a filter F (on |ξ|) is called P-fundamental if F ∩P 6= ∅ for each P ∈ P. We
denote by FP the set of P-fundamental filters.

A convergence is called P-complete if each P-fundamental filter is ad-
herent (equivalently, if each P-fundamental ultrafilter is convergent, or else
whenever each P-fundamental filter is compactoid) (9). Notice that if a con-
vergence is P-complete and S is a collection such that for each P ∈ P there
exists a refinement (10) S of P such that S ∈ S, then it is also S-complete.

For a family P of subsets of X, let

P∪ :=
{⋃

Q∈Q
Q : Q ⊂ P, cardQ <∞

}
, P↓ :=

{
Q : ∃

P∈P
Q ⊂ P

}
.

Consequently, P∪↓ = P↓∪ is the least (possibly degenerate) ideal including
P. Let P∪ := {P∪ : P ∈ P} and P∪↓ :=

{
P∪↓ : P ∈ P

}
. It is straightforward

that

Proposition 3.1. A convergence is P-complete if and only if it is P∪-
complete if and only if it is P∪↓-complete.

A convergence ξ is said to be κ-complete if there exists a collection P of
covers with cardP ≤ κ such that ξ is P-complete. The least cardinal κ for
which ξ is κ-complete is called the completeness number compl (ξ) of ξ. As
will become clear from our dual approach,

(3.1) compl (ξ) ≤ 22
card|ξ|

for each convergence ξ.
Every filter is ∅-fundamental (where ∅ stands for the empty collection of

families of sets). Therefore (11)

8Much research has been done since [7] on consonant topologies.
9Let ξ, θ be convergences on X. A collection P is called θ-openly ξ-complete if every

θ-open P-fundamental filter is ξ-adherent. Every ξ-complete collection is θ-openly ξ-
complete for every θ. If ξ = θ is fixed, then we say openly complete. In [10] Froĺık uses
the term complete for what I call here openly complete.

10R is called a refinement of P if for each R ∈ R there is P ∈ P such that R ⊂ P.
11Mind that no separation axiom is used in our definitions of compactness and local

compactness.
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Proposition 3.2. A convergence is compact if and only if its complete-
ness number is 0.

A convergence is called locally compactoid if each convergent filter con-
tains a compactoid set. If P is a family of subsets of |ξ| , then ξ is {P}-
complete whenever adhξH 6= ∅ for every P ∈ P and each filter H such that
P ∈ H. Hence

Proposition 3.3. A convergence is locally compactoid if and only if its
completeness number is finite (equivalently 1).

Equivalently, a convergence is locally compactoid if and only if it admits
a cover consisting of compactoid sets.

I call a convergence countably complete if its completeness number is
countable (or 0). In these terms, a topology is Čech-complete whenever
it is completely regular and countably complete.

Of course, the space of rational numbers Q is not complete (in the tradi-
tional terminology), that is, the completeness number of Q is not countable.
A set is called dominating if it is cofinal (12) in (ωω,≤∗) (13) and the domi-
nating number d is the least cardinality of a dominating set (14). We shall
see that

Theorem 3.4. The completeness of the space of rational numbers is d.

4. Conditional completeness

If P is a collection and H is a class of filters, then

HP := FP ∩H

denotes the collection of P-fundamental filters that belong to H. A con-
vergence is called H-conditionally P-complete if each P-fundamental filter
from H is adherent. It is said to be H-conditionally κ-complete if there ex-
ists a collection P of covers with cardP ≤ κ such that it is H-conditionally
P-complete. Finally, the least cardinal κ for which a convergence ξ is H-
conditionally κ-complete is called the H-conditional completeness number
of ξ and is denoted by

complH (ξ) .

Of particular interest is F1-conditional completeness number, where F1

stands for the class of countably based filters. In other words, F1-conditional
completeness is expressed in terms of fundamental filters that are countably
based.

12A subset G of an ordered set X is called cofinal if for every x ∈ X there exists g ∈ G
such that x ≤ g.

13Where f ≤∗ g means that f (n) ≤ g (n) for all but finitely many n.
14It is known that the least cardinal of a cofinal subset of (ωω,≤) is equal to d (see

[17]).
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Example 4.1 (F1-conditional countable completeness). Oxtoby [14] de-
fines a pseudobase as B ⊂ OX \ {∅} such that for each O ∈ OX there is
B ∈ B with B ⊂ O. He calls a topology pseudocomplete if

(1) for each ∅ 6= O ∈ OX there is ∅ 6= P ∈ OX such that clX P ⊂ O;
(2) there exists a sequence of pseudobases {B (n) : n ∈ N} such that if

Un ∈ B (n) and clX Un+1 ⊂ Un for each n, then
⋂
n Un 6= ∅ (15).

It is clear that each pseudocomplete topology is an F1-conditionally count-
ably complete convergence.

5. Cocompletness

If A is a family of subsets of X, then we set Ac := {X \A : A ∈ A} and
if A is a collection of families, then we write A¬ := {Ac : A ∈ A} . Let us
recall a fundamental fact relating covers and non-adherent families ([3],[4]).

If ξ is a convergence, A ⊂ |ξ| and P ⊂ 2|ξ| then

P �ξ A⇐⇒ A ∩ adhξ Pc = ∅,

where �ξ was defined in (1.1).
Let G be a collection (of families of subsets) of |ξ| . A filter F is called

G-cofundamental if F#G implies that G /∈ G. A filter is G-cofundamental if
and only if it is G¬-fundamental. Indeed a filter F does not mesh a family
G whenever there exist F ∈ F and G ∈ G such that F ∩G = ∅, equivalently
F ⊂ Gc, that is, Gc ∈ F so that F ∩ Gc 6= ∅.

A convergence is called G-cocomplete if each G-cofundamental filter is
compactoid. Of course, a convergence is G-cocomplete if and only if it is
G¬-complete. Accordingly, FG¬ is the class of cofundamental filters and thus

Corollary 5.1. A convergence is G-cocomplete if and only if it is G¬-
complete if and only if it is FG¬-compact.

Let us illustrate a clarifying role of the cocompleteness point of view.

Example 5.2 (countably complete non-locally-compact space). The space
of irrational numbers is countably complete, but not locally compact. Let
X := R \Q be the set of irrational numbers with the subspace topology. Of
course, X is dense but not open in R. As R is topological, X is not locally
relatively compact.

For every q ∈ Q, the filter N (q) ∨X is non-adherent in X. As well, the
filters N (+∞) ∨ X and N (−∞) ∨ X are non-adherent (16). Then X is
cocomplete with respect to the countable collection

{N (q) ∨X : q ∈ Q ∪ {−∞,+∞}} ,

15Notice that if P is a cover, then P↓ is a pseudobase. The converse is not true. For
example, all the intervals (a, b) such that a < b and 0 /∈ (a, b) is such a pseudobase.

16N (+∞) is the filter on R generated by {(n,∞) : n ∈ N} and N (−∞) is the filter on
R generated by {(−∞, n) : n ∈ N} .
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because if U is a free ultrafilter on X, then either there is a bounded set in U ,
and thus limR U ∈ R, or U ≥ N (+∞) or U ≥ N (−∞). So if H meshes with
no filter in {N (q) ∨X : q ∈ Q ∪ {−∞,+∞}} , then H contains a bounded
set, hence ∅ 6= adhRH ⊂ X, and thus adhX H = adhRH ∩X.

An essential and illuminating fact about cocompleteness is the following.
Recall that for a given filter G, the symbol β (G) denotes the set of all
ultrafilters finer than G.

Lemma 5.3. A convergence is κ-complete if and only if there exists a
collection G of filters such that cardG ≤ κ and the set of non-convergent
ultrafilters is equal to

⋃
G∈G β (G).

The completeness number of a convergence on X is at most that of the
cardinality of the set of non-convergent ultrafilters, hence not greater than

the cardinality of ultrafilters on X, that is, 22
cardX

, hence (3.1).
The Arhangel’skii-Froĺık theorem is an easy consequence of Lemma 5.3,

as shown in [4].

6. Subspaces

A subset of a convergence space is called a Gκ-subset if it is the intersec-
tion of κ many open sets. Notice that, traditionally Gℵ0 is called Gδ.

A convergence ξ is called weakly diagonal if adhξH is closed for each filter
H ([12]). A convergence ξ is called regular if

(6.1) x ∈ limξ F =⇒ x ∈ limξ {adhξ F : F ∈ F} .
The following two theorems were proved in [4], but I reproduce here the

demonstration of one of them in order to show advantages of the cocom-
pleteness viewpoint.

Theorem 6.1. A dense κ-complete subset of a Hausdorff weakly diagonal
convergence is a Gκ-subset.

Proof. Let X be a Hausdorff weakly diagonal convergence space, Y be a
dense subset of X, and G be a a collection of non-adherent filters on Y
such that cardG = κ and Y is G-cocomplete. If G ∈ G then adhX G is
disjoint from Y and closed in X, because X is weakly diagonal. As Y is
G-cocomplete and Y is dense in X,we infer that X \ Y =

⋃
G∈G adhX G,

hence Y is a Gκ.

Theorem 6.2. Every Gκ-subset of a regular λ-complete convergence space
is κλ-complete.

The compact covering number kc(X) of a topological space X is defined as
the least cardinal of a family L of compact subsets of X such that

⋃
L∈L L =

X.

Lemma 6.3. The compact covering number of the set of irrational num-
bers is d.
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Proof. Let h : R \Q→ NN be a homeomorphism. For every compact subset
K of R\Q, let fK(n) := sup {h (x) (n) : x ∈ K} . As h(K) is compact in the
pointwise topology, fK ∈ NN. Observe that a family L is a cover of R \Q if
and only if {fL : L ∈ L} is cofinal in (NN,≤). Hence kc(P) = d.

As the set of irrational numbers is homeomorphic to R ∩ (0, 1) \Q, there
exists a family of R-closed subsets of R \ Q the union of which is R \ Q.
Hence, by Theorem 6.1, Q is Gd, so that Theorem 3.4 holds.

If G is a collection and H is a class of filters, then HG¬ denotes the
collection of G-cofundamental filters that belong to H. A convergence is
called H-conditionally G-cocomplete if each G-cofundamental filter from H
is adherent. It follows that ξ is H-conditionally κ-complete if and only if
there exists a collection G of non-adherent filters with cardG ≤ κ such that
ξ is H-conditionally G-cocomplete.

7. Complete and cocomplete families

More generally, let ξ be a convergence on a set X, H a class of filters
and P a collection of families of subsets of X. A family A is said to be H-
conditionally P-complete at a family B if adhξH ∈ B# for each filter H ∈ HP
such that H#A. It is clear that

Proposition 7.1. A is H-conditionally P-complete at B if and only if A
is HP-compact at B.

Proposition 7.1 is a simple observation, but its scope is broad. In partic-
ular, by virtue of Theorem 2.2, it implies that for each H and P,

Theorem 7.2. The class of all H-conditionally P-complete isotone fam-
ilies fulfills the axioms of open sets of a hyperspace topology.

Corollary 7.3. The class of all H-conditionally P-complete openly iso-
tone families of open sets fulfills the axioms of open sets of a hyperspace
topology.

The H-conditional completeness number of A with respect to B
complξH (A,B)

is the least cardinal κ such that there exists a collection P of covers of ξ such
that cardP = κ and A is H-conditionally P-complete at B. In particular, if

B = {|ξ|} , then we abridge complξH (A) or even

complH (A) ,

when a convergence is implicit.
Of course, if H = F is the class of all filters, H-conditional completeness

becomes completeness. Then we set

compl (A) := complF (A) .

Dually, if H is a class of filters and P is a collection of families of subsets
of X, then A is said to be H-conditionally G-cocomplete at a family B if
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adhξH ∈ B# for each filter H ∈ H such that H#A. Accordingly, the H-
conditional completeness number of A with respect to B is the least cardinal
κ such that there exists a collection G of non-adherent filters such that
cardG = κ and A is H-conditionally G-cocomplete at B.

8. Product theorems

In [4, Theorem 7.1] it is proved (on using cocompleteness) that the com-
pleteness number of product of convergences is equal to the sum of the com-
pleteness numbers of the component convergences. The following theorem
extends that result to filters in products.

Theorem 8.1. Let ξα be a convergence for α < κ. The completeness
number of a filter F at the product

∏
α<κ |ξα| is

compl (F) =
∑

α<κ
compl (pα [F ]) .

Proof. For every α < κ such that compl (pα [F ]) > 0, let Pα be a collection
of covers of ξα such that cardPα = compl (pα [F ]) . For each P ∈ Pα, let

SP := {P ×
∏

α 6=γ<κ
Xγ : P ∈ P}.

Then SP is a cover of
∏
γ<κ ξγ , because if limH 6= ∅ then limξγ pγ(H) 6= ∅

for each γ < κ, hence pα(H) ∩ P 6= ∅, that is, H ∩ SP 6= ∅.
If S := {SP : P ∈ Pα, compl (pα [F ]) > 0, α < κ}, then F is S-complete.

Indeed, if U ≥ F is an S-fundamental ultrafilter, then pα [U ] #pα [F ] and
U ∩ SP 6= ∅ for each α < κ such that compl (pα [F ]) > 0 and for every
P ∈ Pα, that is, pα(U)∩P 6= ∅. Therefore limξα pα(U) 6= ∅, because pα [F ]
is Pα-complete; if compl (pα [F ]) = 0, then limξα pα(U) 6= ∅, because pα [F ]
is compactoid. It follows that limξ U 6= ∅. On the other hand,

cardS =
∑

α<γ
cardPα =

∑
α<γ

compl (pα [F ])

= sup
α<κ

compl (pα [F ]) · card {α < κ : compl (pα [F ]) > 0}

In particular, by taking the principal filter of the whole product, we get
[4, Proposition 7.1]:

compl
(∏

α<κ
ξα

)
=
∑

α<κ
compl (ξα)

= sup
α<κ

compl (ξα) · card {α < κ : compl (ξα) > 0} .

If compl (pα [F ]) = 0 for each α < κ, then we recover Theorem 2.1.

Theorem 8.2. A filter F is
∏
j∈J ξj-compactoid if and only if pj [F ] is

ξj-compactoid for each j ∈ J.

Corollary 8.3 (Tikhonov). The product
∏
α<κ ξα is compact if and only

if ξα is compact for every α < κ.



COMPLETENESS OF FAMILIES IN CONVERGENCE SPACES 11

On the other hand,

Corollary 8.4. The product
∏
α<κ ξα is locally compactoid if and only

if ξα is locally compactoid for finitely many α < κ and compact for other
α < κ.

Theorem 8.1 does not extend to conditional completeness. For example,
F1-conditional countable completeness is productive.

Theorem 8.5. If F is a filter and pj [F ] is F1-conditionally countably
complete for each j ∈ J, then F is F1-conditionally countably complete.

Proof. Let
{
ξj : j ∈ J

}
be convergences, let ξ :=

∏
j∈J ξj and let F be a

filter on
∏
j∈J
∣∣ξj∣∣ such that pj [F ] is F1-conditionally countably complete.

For each j ∈ J, consider a sequence {Pj (n) : n ∈ N} of ideal covers of ξj
such that Pj (n+ 1) is a refinement of Pj (n) and such that pj [F ] is F1-
conditionally complete with respect to {Pj (n) : n ∈ N} . Define

P (n) :=
{∏

j∈J
Pnj : Pnj ∈ Pj (n) , card

{
Pnj 6=

∣∣ξj∣∣} <∞} .
Then F is F1-conditionally {P (n) : n ∈ N}-complete. Indeed, if H ∈ F1 is
such that H#F and H∩P (n) 6= ∅ for each n, that is, there is a decreasing
sequence (Hn)n of elements of H such that

Hn =
∏

j∈J
Pnj ,

so that Pnj ⊃ P
n+1
j for each j ∈ J and n ∈ N and {Pnj }n#pj [F ] . It follows

that, for each j ∈ J, there is xj ∈ adhξj{P
n
j }n, that is, there is an ultrafilter

Uj on
∣∣ξj∣∣ such that xj ∈ limξj Uj and Uj#{Pnj }n ∨ pj [H] . Equivalently,

p−j [Uj ] #H for each j ∈ J, hence H#
∨
j∈J p

−
j [Uj ] and there is an ultrafilter

W such that

H ∨
∨

j∈J
p−j [Uj ] ≤ W.

Thus, if f (j) := xj for each j ∈ J, then f ∈ limξW and thus f ∈ adhξH.

Corollary 8.6. Each product of F1-conditionally countably complete con-
vergences is countably F1-conditionally complete.

Oxtoby proved in [14] that an arbitrary product of pseudocomplete topolo-
gies is pseudocomplete, which is a consequence of Corollary 8.6. It is imme-
diate that a regular F1-conditionally countably complete topology has the
Baire property, hence every product of regular F1-conditionally countably
complete topologies has the Baire property, although the product of two
topologies with the Baire property need not have the Baire property.

9. Preservation of completeness number by maps

Compactness is preserved by continuous maps, but local (relative) com-
pactness is not. These two special cases of completeness (0-completeness
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and 1-completeness) behave differently under continuous maps. The cocom-
pleteness approach provides an explanation of this difference. Moreover,
it enables us to understand the mechanism of preservation of completeness
numbers.

If f : X → Y and G is a collection of families of subsets of X, then let
f {G} := {f [G] : G ∈ G} . Similarly, if H is a collection of families of subsets
of Y , then let f− {H} := {f− [H] : H ∈ H} .

If ξ and τ are convergences, then C (ξ, τ) stands for the set of all maps
that are continuous from ξ to τ . Let A be a family on |ξ| and B a family on
|τ | .

Proposition 9.1. If A is G-cocomplete at f− [B] and f ∈ C (ξ, τ) and is
surjective, then f [A] is f {G}-cocomplete at B.

Proof. Let H#A and H¬#f [G] for each G ∈ G. Equivalently, f− [H] #A
and f− [H]¬#G for each G ∈ G, hence adhξ f

− [H] ∈ f− [B]#, equivalently

f (adhξ f
− [H]) ∈ B#. We infer that f (adhξ f

− [H]) ⊂ adhτ H, because
f ∈ C (ξ, τ) and surjective.

Corollary 9.2. If ξ is G-cocomplete and f ∈ C (ξ, τ) and surjective, then
τ is f {G}-cocomplete.

A map does not increase the completeness number if it preserves cocom-
plete collections and maps non-adherent filters onto non-adherent filters. By
Proposition 9.1, continuous maps preserve cocomplete collections. On the
other hand, a map f : |ξ| → |τ | maps non-adherent filters onto non-adherent
filters if and only of

(9.1) adhτ f [G] 6= ∅ =⇒ adhξ G 6= ∅.

for each filter G on |ξ|. It was shown in [3] that a surjective map f : |ξ| → |τ |
is perfect (17) if and only if for every y ∈ |τ | and each filter G on |ξ| ,

y ∈ adhτ f [G] =⇒ f−(y) ∩ adhξ G 6= ∅.

Therefore,

Theorem 9.3. If f ∈ C (ξ, τ) is a surjective perfect map, then the com-
pleteness number of A at f− [B] is equal to the completeness number of f [A]
at B.

Proof. By Proposition 9.1, if A is G-cocomplete at f− [B] and f ∈ C (ξ, τ) ,
then f [A] is f {G}-cocomplete at B, hence card (G) ≥ card f {G} .

If G is a collection of ξ-non-adherent filters and f is perfect then by
(9.1) f {G} is a collection of τ -non-adherent filters. It follows that the
completeness of A at f− [B] is greater than or equal to the completeness of
f [A] at B.

17This definition does not require continuity. In other words, a map is said to be perfect
if the preimage of each point is relatively compact.
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Conversely, if f [A] is H-cocomplete at B and H is a collection of τ -non-
adherent filters, then, by the continuity of f, the collection f− {H} consists
of ξ-non-adherent filters. Indeed, if on the contrary, x ∈ adhξ f

− [H] then
there exists U ∈ β (f− [H]) such that x ∈ limξ U . By continuity, f(x) ∈
limτ f [U ] ⊂ adhτ H, which is a contradiction, because f [U ] #H.

To see that A is f− {H}-cocomplete at f− [B], let F#A and F¬#f− [H]
(equivalently f [F ]¬#H) for every H ∈ H. As f [A] is H-cocomplete at
B, adhτ f [F ] ∈ B#, that is, adhτ f [F ] #B for each B ∈ B, and since f
is perfect, by (9.1), adhξ F#f− (B). This means that the completeness of
f [A] at B is greater than or equal to the completeness A at f− [B].

As a corollary, we get

Theorem 9.4. If f ∈ C (ξ, τ) is surjective and perfect, then compl(ξ) =
compl(τ).

If compl(ξ) = 0, then (9.1) is fulfilled (for each map f and every τ),
because each filter on |ξ| is ξ-adherent.
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